Edit model card

distilbert-base-uncased

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9069
  • Accuracy: {'accuracy': 0.871}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 1.7205 {'accuracy': 0.868}
0.1563 2.0 500 1.5937 {'accuracy': 0.865}
0.1563 3.0 750 1.6187 {'accuracy': 0.861}
0.1939 4.0 1000 1.2535 {'accuracy': 0.861}
0.1939 5.0 1250 1.5725 {'accuracy': 0.87}
0.0701 6.0 1500 1.7691 {'accuracy': 0.874}
0.0701 7.0 1750 1.8419 {'accuracy': 0.864}
0.0224 8.0 2000 1.8159 {'accuracy': 0.876}
0.0224 9.0 2250 1.9088 {'accuracy': 0.871}
0.0129 10.0 2500 1.9069 {'accuracy': 0.871}

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for nainakader/distilbert-base-uncased

Finetuned
(6688)
this model