mistralinstruct-7b-sft-lora

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.3 on the Belgian Law QnA dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2937

Model description

The goal of this model was to experiment how far we can push a model by fine tuning it on a french QnA dataset on Belgian Law. The goal here is to see if we can get a small size LLM to become good enough in terms of Legal Expertise in a specific country

Intended uses & limitations

Legal Question Answering (Belgian Law/French)

Training and evaluation data

SFT-LORA Big thanks to Niels Rogge's notebook that helped me through the process https://github.com/NielsRogge/Transformers-Tutorials/blob/master/Mistral/Supervised_fine_tuning_(SFT)_of_an_LLM_using_Hugging_Face_tooling.ipynb

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 128
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.3021 0.9778 10 1.2937

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for naimsassine/mistralinstruct-7b-sft-lora-belgianlaw

Adapter
(236)
this model

Dataset used to train naimsassine/mistralinstruct-7b-sft-lora-belgianlaw