metadata
tags:
- merge
- mergekit
- lazymergekit
- google-bert/bert-base-uncased
- venkycs/llama-v2-7b-32kC-Security
base_model:
- google-bert/bert-base-uncased
- venkycs/llama-v2-7b-32kC-Security
license: apache-2.0
pipeline_tag: depth-estimation
security_model
security_model is a merge of the following models using LazyMergekit:
🧩 Configuration
slices:
- sources:
- model: google-bert/bert-base-uncased
layer_range: [0, 32]
- model: venkycs/llama-v2-7b-32kC-Security
layer_range: [0, 32]
merge_method: slerp
base_model: google-bert/bert-base-uncased
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "nagayama0706/security_model"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])