File size: 1,506 Bytes
c793b3a 84ccdc8 c793b3a 84ccdc8 c793b3a 84ccdc8 c793b3a 84ccdc8 c793b3a 84ccdc8 c793b3a 84ccdc8 c793b3a 84ccdc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
base_model: google/reformer-crime-and-punishment
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: reformer_model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# reformer_model
This model is a fine-tuned version of [google/reformer-crime-and-punishment](https://huggingface.co./google/reformer-crime-and-punishment) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6693
- Accuracy: 0.561
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6841 | 1.0 | 625 | 0.6725 | 0.559 |
| 0.6789 | 2.0 | 1250 | 0.6693 | 0.561 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cpu
- Datasets 2.19.1
- Tokenizers 0.19.1
|