nadellaroshni commited on
Commit
84ccdc8
1 Parent(s): 632be93

End of training

Browse files
Files changed (1) hide show
  1. README.md +12 -13
README.md CHANGED
@@ -1,24 +1,23 @@
1
  ---
2
- license: apache-2.0
3
- base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
  metrics:
7
  - accuracy
8
  model-index:
9
- - name: test_model2
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # test_model2
17
 
18
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.3250
21
- - Accuracy: 0.863
22
 
23
  ## Model description
24
 
@@ -49,13 +48,13 @@ The following hyperparameters were used during training:
49
 
50
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
52
- | 0.5093 | 1.0 | 625 | 0.3441 | 0.852 |
53
- | 0.3595 | 2.0 | 1250 | 0.3250 | 0.863 |
54
 
55
 
56
  ### Framework versions
57
 
58
- - Transformers 4.35.2
59
- - Pytorch 2.1.1+cpu
60
- - Datasets 2.18.0
61
- - Tokenizers 0.15.0
 
1
  ---
2
+ base_model: google/reformer-crime-and-punishment
 
3
  tags:
4
  - generated_from_trainer
5
  metrics:
6
  - accuracy
7
  model-index:
8
+ - name: reformer_model
9
  results: []
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
+ # reformer_model
16
 
17
+ This model is a fine-tuned version of [google/reformer-crime-and-punishment](https://huggingface.co/google/reformer-crime-and-punishment) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.6693
20
+ - Accuracy: 0.561
21
 
22
  ## Model description
23
 
 
48
 
49
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
50
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
51
+ | 0.6841 | 1.0 | 625 | 0.6725 | 0.559 |
52
+ | 0.6789 | 2.0 | 1250 | 0.6693 | 0.561 |
53
 
54
 
55
  ### Framework versions
56
 
57
+ - Transformers 4.40.2
58
+ - Pytorch 2.3.0+cpu
59
+ - Datasets 2.19.1
60
+ - Tokenizers 0.19.1