|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- germeval_14 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-base-uncased-de-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: germeval_14 |
|
type: germeval_14 |
|
config: germeval_14 |
|
split: test |
|
args: germeval_14 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8109431552054502 |
|
- name: Recall |
|
type: recall |
|
value: 0.771990271584921 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7909874364032811 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9786213727432309 |
|
language: |
|
- de |
|
widget: |
|
- text: Mein Name ist Wolfgang und ich lebe in Berlin |
|
example_title: Example 1 |
|
- text: Mein Name ist Sarah und ich lebe in London |
|
example_title: Example 2 |
|
- text: Mein Name ist Clara und ich lebe in Berkeley, California. |
|
example_title: Example 3 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-uncased-de-ner |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the germeval_14 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1374 |
|
- Precision: 0.8109 |
|
- Recall: 0.7720 |
|
- F1: 0.7910 |
|
- Accuracy: 0.9786 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
The model was trained on data that follows the [`IOB`](<https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)>) convention. Full tagset with indices: |
|
|
|
```python |
|
{'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6,} |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 0 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.104 | 1.0 | 3000 | 0.0973 | 0.7027 | 0.7323 | 0.7172 | 0.9712 | |
|
| 0.0597 | 2.0 | 6000 | 0.0942 | 0.8135 | 0.7172 | 0.7623 | 0.9766 | |
|
| 0.0345 | 3.0 | 9000 | 0.1051 | 0.7924 | 0.7569 | 0.7742 | 0.9773 | |
|
| 0.0172 | 4.0 | 12000 | 0.1170 | 0.8074 | 0.7628 | 0.7844 | 0.9779 | |
|
| 0.0092 | 5.0 | 15000 | 0.1264 | 0.8068 | 0.7803 | 0.7933 | 0.9788 | |
|
| 0.0035 | 6.0 | 18000 | 0.1374 | 0.8109 | 0.7720 | 0.7910 | 0.9786 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.4 |
|
- Pytorch 1.13.1+cu116 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.2 |