Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_id = "mzbac/Phi-3-mini-4k-grammar-correction"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

messages = [
    {
        "role": "user",
        "content": "Please correct, polish, or translate the text delimited by triple backticks to standard English.",
    },
    {
        "role": "user",
        "content": "Text=```neither ็ป็†ๆˆ–ๅ‘˜ๅทฅ has been informed about the meeting```",
    },
]

input_ids = tokenizer.apply_chat_template(
    messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)

terminators = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|end|>")]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.1,
)
response = outputs[0]
print(tokenizer.decode(response))

# <s><|user|> Please correct, polish, or translate the text delimited by triple backticks to standard English.<|end|><|assistant|>
# <|user|> Text=```neither ็ป็†ๆˆ–ๅ‘˜ๅทฅ has been informed about the meeting```<|end|>
# <|assistant|> Output=Neither the manager nor the employee has been informed about the meeting.<|end|>
Downloads last month
168
Safetensors
Model size
3.82B params
Tensor type
BF16
ยท
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for mzbac/Phi-3-mini-4k-grammar-correction

Quantizations
1 model