KURE-v1 / README.md
Bingsu's picture
Add new SentenceTransformer model
5674c69 verified
|
raw
history blame
16.9 kB
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1879136
- loss:CachedGISTEmbedLoss
license: mit
metrics:
- recall
- precision
- f1
base_model:
- BAAI/bge-m3
library_name: sentence-transformers
---
# πŸ”Ž KURE-v1
Introducing Korea University Retrieval Embedding model, KURE-v1
It has shown remarkable performance in Korean text retrieval, speficially overwhelming most multilingual embedding models.
To our knowledge, It is one of the best publicly opened Korean retrieval models.
For details, visit the [KURE repository](https://github.com/nlpai-lab/KURE)
---
## Model Versions
| Model Name | Dimension | Sequence Length | Introduction |
|:----:|:---:|:---:|:---:|
| [KURE-v1](https://huggingface.co./nlpai-lab/KURE-v1) | 1024 | 8192 | Fine-tuned [BAAI/bge-m3](https://huggingface.co./BAAI/bge-m3) with Korean data via [CachedGISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss)
| [KoE5](https://huggingface.co./nlpai-lab/KoE5) | 1024 | 512 | Fine-tuned [intfloat/multilingual-e5-large](https://huggingface.co./intfloat/multilingual-e5-large) with [ko-triplet-v1.0](https://huggingface.co./datasets/nlpai-lab/ko-triplet-v1.0) via [CachedMultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) |
## Model Description
This is the model card of a πŸ€— transformers model that has been pushed on the Hub.
- **Developed by:** [NLP&AI Lab](http://nlp.korea.ac.kr/)
- **Language(s) (NLP):** Korean, English
- **License:** MIT
- **Finetuned from model:** [BAAI/bge-m3](https://huggingface.co./BAAI/bge-m3)
## Example code
### Install Dependencies
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
### Python code
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the πŸ€— Hub
model = SentenceTransformer("nlpai-lab/KURE-v1")
# Run inference
sentences = [
'ν—Œλ²•κ³Ό 법원쑰직법은 μ–΄λ–€ 방식을 톡해 기본ꢌ 보μž₯ λ“±μ˜ λ‹€μ–‘ν•œ 법적 λͺ¨μƒ‰μ„ κ°€λŠ₯ν•˜κ²Œ ν–ˆμ–΄',
'4. μ‹œμ‚¬μ κ³Ό κ°œμ„ λ°©ν–₯ μ•žμ„œ μ‚΄νŽ΄λ³Έ 바와 같이 우리 ν—Œλ²•κ³Ό r법원쑰직 법」은 λŒ€λ²•μ› ꡬ성을 λ‹€μ–‘ν™”ν•˜μ—¬ 기본ꢌ 보μž₯κ³Ό 민주주의 확립에 μžˆμ–΄ 닀각적인 법적 λͺ¨μƒ‰μ„ κ°€λŠ₯ν•˜κ²Œ ν•˜λŠ” 것을 κ·Όλ³Έ κ·œλ²”μœΌλ‘œ ν•˜κ³  μžˆλ‹€. λ”μš±μ΄ ν•©μ˜μ²΄λ‘œμ„œμ˜ λŒ€λ²•μ› 원리λ₯Ό μ±„νƒν•˜κ³  μžˆλŠ” 것 μ—­μ‹œ κ·Έ κ΅¬μ„±μ˜ 닀양성을 μš”μ²­ν•˜λŠ” κ²ƒμœΌλ‘œ ν•΄μ„λœλ‹€. 이와 같은 κ΄€μ μ—μ„œ λ³Ό λ•Œ ν˜„μ§ 법원μž₯κΈ‰ κ³ μœ„λ²•κ΄€μ„ μ€‘μ‹¬μœΌλ‘œ λŒ€λ²•μ›μ„ κ΅¬μ„±ν•˜λŠ” 관행은 κ°œμ„ ν•  ν•„μš”κ°€ μžˆλŠ” κ²ƒμœΌλ‘œ 보인닀.',
'μ—°λ°©ν—Œλ²•μž¬νŒμ†ŒλŠ” 2001λ…„ 1μ›” 24일 5:3의 λ‹€μˆ˜κ²¬ν•΄λ‘œ γ€Œλ²•μ›μ‘°μ§λ²•γ€ 제169μ‘° 제2문이 ν—Œλ²•μ— ν•©μΉ˜λœλ‹€λŠ” νŒκ²°μ„ λ‚΄λ ΈμŒ β—‹ 5인의 λ‹€μˆ˜ μž¬νŒκ΄€μ€ μ†Œμ†‘κ΄€κ³„μΈμ˜ 인격ꢌ 보호, κ³΅μ •ν•œ 절차의 보μž₯κ³Ό 방해받지 μ•ŠλŠ” 법과 진싀 발견 등을 근거둜 ν•˜μ—¬ ν…”λ ˆλΉ„μ „ μ΄¬μ˜μ— λŒ€ν•œ μ ˆλŒ€μ μΈ κΈˆμ§€λ₯Ό ν—Œλ²•μ— ν•©μΉ˜ν•˜λŠ” κ²ƒμœΌλ‘œ λ³΄μ•˜μŒ β—‹ κ·ΈλŸ¬λ‚˜ λ‚˜λ¨Έμ§€ 3인의 μž¬νŒκ΄€μ€ ν–‰μ •λ²•μ›μ˜ μ†Œμ†‘μ ˆμ°¨λŠ” νŠΉλ³„ν•œ 인격ꢌ 보호의 이읡도 μ—†μœΌλ©°, ν…”λ ˆλΉ„μ „ 곡개주의둜 인해 법과 진싀 발견의 과정이 μ–Έμ œλ‚˜ μœ„νƒœλ‘­κ²Œ λ˜λŠ” 것은 μ•„λ‹ˆλΌλ©΄μ„œ λ°˜λŒ€μ˜κ²¬μ„ μ œμ‹œν•¨ β—‹ μ™œλƒν•˜λ©΄ ν–‰μ •λ²•μ›μ˜ μ†Œμ†‘μ ˆμ°¨μ—μ„œλŠ” μ†Œμ†‘λ‹Ήμ‚¬μžκ°€ 개인적으둜 직접 심리에 μ°Έμ„ν•˜κΈ°λ³΄λ‹€λŠ” λ³€ν˜Έμ‚¬κ°€ μ°Έμ„ν•˜λŠ” κ²½μš°κ°€ 많으며, μ‹¬λ¦¬λŒ€μƒλ„ μ‚¬μ‹€λ¬Έμ œκ°€ μ•„λ‹Œ 법λ₯ λ¬Έμ œκ°€ λŒ€λΆ€λΆ„μ΄κΈ° λ•Œλ¬Έμ΄λΌλŠ” κ²ƒμž„ β–‘ ν•œνŽΈ, μ—°λ°©ν—Œλ²•μž¬νŒμ†ŒλŠ” γ€Œμ—°λ°©ν—Œλ²•μž¬νŒμ†Œλ²•γ€(Bundesverfassungsgerichtsgesetz: BVerfGG) 제17a쑰에 따라 μ œν•œμ μ΄λ‚˜λ§ˆ μž¬νŒμ— λŒ€ν•œ 방솑을 ν—ˆμš©ν•˜κ³  있음 β—‹ γ€Œμ—°λ°©ν—Œλ²•μž¬νŒμ†Œλ²•γ€ 제17μ‘°μ—μ„œ γ€Œλ²•μ›μ‘°μ§λ²•γ€ 제14절 내지 제16절의 κ·œμ •μ„ μ€€μš©ν•˜λ„λ‘ ν•˜κ³  μžˆμ§€λ§Œ, λ…ΉμŒμ΄λ‚˜ μ΄¬μ˜μ„ ν†΅ν•œ μž¬νŒκ³΅κ°œμ™€ κ΄€λ ¨ν•˜μ—¬μ„œλŠ” γ€Œλ²•μ›μ‘°μ§λ²•γ€κ³Ό λ‹€λ₯Έ λ‚΄μš©μ„ κ·œμ •ν•˜κ³  있음',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# Results for KURE-v1
# tensor([[1.0000, 0.6967, 0.5306],
# [0.6967, 1.0000, 0.4427],
# [0.5306, 0.4427, 1.0000]])
```
## Training Details
### Training Data
#### KURE-v1
- Korean query-document-hard_negative(5) data
- 2,000,000 examples
### Training Procedure
- **loss:** Used **[CachedGISTEmbedLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedgistembedloss)** by sentence-transformers
- **batch size:** 4096
- **learning rate:** 2e-05
- **epochs:** 1
## Evaluation
### Metrics
- Recall, Precision, NDCG, F1
### Benchmark Datasets
- [Ko-StrategyQA](https://huggingface.co./datasets/taeminlee/Ko-StrategyQA): ν•œκ΅­μ–΄ ODQA multi-hop 검색 데이터셋 (StrategyQA λ²ˆμ—­)
- [AutoRAGRetrieval](https://huggingface.co./datasets/yjoonjang/markers_bm): 금육, 곡곡, 의료, 법λ₯ , 컀머슀 5개 뢄야에 λŒ€ν•΄, pdfλ₯Ό νŒŒμ‹±ν•˜μ—¬ κ΅¬μ„±ν•œ ν•œκ΅­μ–΄ λ¬Έμ„œ 검색 데이터셋
- [MIRACLRetrieval]([url](https://huggingface.co./datasets/miracl/miracl)): Wikipedia 기반의 ν•œκ΅­μ–΄ λ¬Έμ„œ 검색 데이터셋
- [PublicHealthQA]([url](https://huggingface.co./datasets/xhluca/publichealth-qa)): 의료 및 곡쀑보건 도메인에 λŒ€ν•œ ν•œκ΅­μ–΄ λ¬Έμ„œ 검색 데이터셋
- [BelebeleRetrieval]([url](https://huggingface.co./datasets/facebook/belebele)): FLORES-200 기반의 ν•œκ΅­μ–΄ λ¬Έμ„œ 검색 데이터셋
- [MrTidyRetrieval](https://huggingface.co./datasets/mteb/mrtidy): Wikipedia 기반의 ν•œκ΅­μ–΄ λ¬Έμ„œ 검색 데이터셋
- [MultiLongDocRetrieval](https://huggingface.co./datasets/Shitao/MLDR): λ‹€μ–‘ν•œ λ„λ©”μΈμ˜ ν•œκ΅­μ–΄ μž₯λ¬Έ 검색 데이터셋
- [XPQARetrieval](https://huggingface.co./datasets/jinaai/xpqa): λ‹€μ–‘ν•œ λ„λ©”μΈμ˜ ν•œκ΅­μ–΄ λ¬Έμ„œ 검색 데이터셋
## Results
μ•„λž˜λŠ” λͺ¨λ“  λͺ¨λΈμ˜, λͺ¨λ“  벀치마크 데이터셋에 λŒ€ν•œ 평균 κ²°κ³Όμž…λ‹ˆλ‹€.
μžμ„Έν•œ κ²°κ³ΌλŠ” [KURE Github](https://github.com/nlpai-lab/KURE/tree/main/eval/results)μ—μ„œ ν™•μΈν•˜μ‹€ 수 μžˆμŠ΅λ‹ˆλ‹€.
### Top-k 1
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
| **nlpai-lab/KURE-v1** | **0.52640** | **0.60551** | **0.60551** | **0.55784** |
| dragonkue/BGE-m3-ko | 0.52361 | 0.60394 | 0.60394 | 0.55535 |
| BAAI/bge-m3 | 0.51778 | 0.59846 | 0.59846 | 0.54998 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.51246 | 0.59384 | 0.59384 | 0.54489 |
| nlpai-lab/KoE5 | 0.50157 | 0.57790 | 0.57790 | 0.53178 |
| intfloat/multilingual-e5-large | 0.50052 | 0.57727 | 0.57727 | 0.53122 |
| jinaai/jina-embeddings-v3 | 0.48287 | 0.56068 | 0.56068 | 0.51361 |
| BAAI/bge-multilingual-gemma2 | 0.47904 | 0.55472 | 0.55472 | 0.50916 |
| intfloat/multilingual-e5-large-instruct | 0.47842 | 0.55435 | 0.55435 | 0.50826 |
| intfloat/multilingual-e5-base | 0.46950 | 0.54490 | 0.54490 | 0.49947 |
| intfloat/e5-mistral-7b-instruct | 0.46772 | 0.54394 | 0.54394 | 0.49781 |
| Alibaba-NLP/gte-multilingual-base | 0.46469 | 0.53744 | 0.53744 | 0.49353 |
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.46633 | 0.53625 | 0.53625 | 0.49429 |
| openai/text-embedding-3-large | 0.44884 | 0.51688 | 0.51688 | 0.47572 |
| Salesforce/SFR-Embedding-2_R | 0.43748 | 0.50815 | 0.50815 | 0.46504 |
| upskyy/bge-m3-korean | 0.43125 | 0.50245 | 0.50245 | 0.45945 |
| jhgan/ko-sroberta-multitask | 0.33788 | 0.38497 | 0.38497 | 0.35678 |
### Top-k 3
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
| **nlpai-lab/KURE-v1** | **0.68678** | **0.28711** | **0.65538** | **0.39835** |
| dragonkue/BGE-m3-ko | 0.67834 | 0.28385 | 0.64950 | 0.39378 |
| BAAI/bge-m3 | 0.67526 | 0.28374 | 0.64556 | 0.39291 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.67128 | 0.28193 | 0.64042 | 0.39072 |
| intfloat/multilingual-e5-large | 0.65807 | 0.27777 | 0.62822 | 0.38423 |
| nlpai-lab/KoE5 | 0.65174 | 0.27329 | 0.62369 | 0.37882 |
| BAAI/bge-multilingual-gemma2 | 0.64415 | 0.27416 | 0.61105 | 0.37782 |
| jinaai/jina-embeddings-v3 | 0.64116 | 0.27165 | 0.60954 | 0.37511 |
| intfloat/multilingual-e5-large-instruct | 0.64353 | 0.27040 | 0.60790 | 0.37453 |
| Alibaba-NLP/gte-multilingual-base | 0.63744 | 0.26404 | 0.59695 | 0.36764 |
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.63163 | 0.25937 | 0.59237 | 0.36263 |
| intfloat/multilingual-e5-base | 0.62099 | 0.26144 | 0.59179 | 0.36203 |
| intfloat/e5-mistral-7b-instruct | 0.62087 | 0.26144 | 0.58917 | 0.36188 |
| openai/text-embedding-3-large | 0.61035 | 0.25356 | 0.57329 | 0.35270 |
| Salesforce/SFR-Embedding-2_R | 0.60001 | 0.25253 | 0.56346 | 0.34952 |
| upskyy/bge-m3-korean | 0.59215 | 0.25076 | 0.55722 | 0.34623 |
| jhgan/ko-sroberta-multitask | 0.46930 | 0.18994 | 0.43293 | 0.26696 |
### Top-k 5
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
| **nlpai-lab/KURE-v1** | **0.73851** | **0.19130** | **0.67479** | **0.29903** |
| dragonkue/BGE-m3-ko | 0.72517 | 0.18799 | 0.66692 | 0.29401 |
| BAAI/bge-m3 | 0.72954 | 0.18975 | 0.66615 | 0.29632 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.72962 | 0.18875 | 0.66236 | 0.29542 |
| nlpai-lab/KoE5 | 0.70820 | 0.18287 | 0.64499 | 0.28628 |
| intfloat/multilingual-e5-large | 0.70124 | 0.18316 | 0.64402 | 0.28588 |
| BAAI/bge-multilingual-gemma2 | 0.70258 | 0.18556 | 0.63338 | 0.28851 |
| jinaai/jina-embeddings-v3 | 0.69933 | 0.18256 | 0.63133 | 0.28505 |
| intfloat/multilingual-e5-large-instruct | 0.69018 | 0.17838 | 0.62486 | 0.27933 |
| Alibaba-NLP/gte-multilingual-base | 0.69365 | 0.17789 | 0.61896 | 0.27879 |
| intfloat/multilingual-e5-base | 0.67250 | 0.17406 | 0.61119 | 0.27247 |
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.67447 | 0.17114 | 0.60952 | 0.26943 |
| intfloat/e5-mistral-7b-instruct | 0.67449 | 0.17484 | 0.60935 | 0.27349 |
| openai/text-embedding-3-large | 0.66365 | 0.17004 | 0.59389 | 0.26677 |
| Salesforce/SFR-Embedding-2_R | 0.65622 | 0.17018 | 0.58494 | 0.26612 |
| upskyy/bge-m3-korean | 0.65477 | 0.17015 | 0.58073 | 0.26589 |
| jhgan/ko-sroberta-multitask | 0.53136 | 0.13264 | 0.45879 | 0.20976 |
### Top-k 10
| Model | Average Recall_top1 | Average Precision_top1 | Average NDCG_top1 | Average F1_top1 |
|-----------------------------------------|----------------------|------------------------|-------------------|-----------------|
| **nlpai-lab/KURE-v1** | **0.79682** | **0.10624** | **0.69473** | **0.18524** |
| dragonkue/BGE-m3-ko | 0.78450 | 0.10492 | 0.68748 | 0.18288 |
| BAAI/bge-m3 | 0.79195 | 0.10592 | 0.68723 | 0.18456 |
| Snowflake/snowflake-arctic-embed-l-v2.0 | 0.78669 | 0.10462 | 0.68189 | 0.18260 |
| intfloat/multilingual-e5-large | 0.75902 | 0.10147 | 0.66370 | 0.17693 |
| nlpai-lab/KoE5 | 0.75296 | 0.09937 | 0.66012 | 0.17369 |
| BAAI/bge-multilingual-gemma2 | 0.76153 | 0.10364 | 0.65330 | 0.18003 |
| jinaai/jina-embeddings-v3 | 0.76277 | 0.10240 | 0.65290 | 0.17843 |
| intfloat/multilingual-e5-large-instruct | 0.74851 | 0.09888 | 0.64451 | 0.17283 |
| Alibaba-NLP/gte-multilingual-base | 0.75631 | 0.09938 | 0.64025 | 0.17363 |
| Alibaba-NLP/gte-Qwen2-7B-instruct | 0.74092 | 0.09607 | 0.63258 | 0.16847 |
| intfloat/multilingual-e5-base | 0.73512 | 0.09717 | 0.63216 | 0.16977 |
| intfloat/e5-mistral-7b-instruct | 0.73795 | 0.09777 | 0.63076 | 0.17078 |
| openai/text-embedding-3-large | 0.72946 | 0.09571 | 0.61670 | 0.16739 |
| Salesforce/SFR-Embedding-2_R | 0.71662 | 0.09546 | 0.60589 | 0.16651 |
| upskyy/bge-m3-korean | 0.71895 | 0.09583 | 0.60258 | 0.16712 |
| jhgan/ko-sroberta-multitask | 0.61225 | 0.07826 | 0.48687 | 0.13757 |
<br/>
## Citation
If you find our paper or models helpful, please consider cite as follows:
```text
@misc{KURE,
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
year = {2024},
url = {https://github.com/nlpai-lab/KURE}
},
@misc{KoE5,
author = {NLP & AI Lab and Human-Inspired AI research},
title = {KoE5: A New Dataset and Model for Improving Korean Embedding Performance},
year = {2024},
publisher = {Youngjoon Jang, Junyoung Son, Taemin Lee},
journal = {GitHub repository},
howpublished = {\url{https://github.com/nlpai-lab/KoE5}},
}
```