UrduNER / README.md
mwz's picture
End of training
4f084da
|
raw
history blame
2.63 kB
metadata
license: mit
base_model: urduhack/roberta-urdu-small
tags:
  - generated_from_trainer
datasets:
  - wikiann
model-index:
  - name: UrduNER
    results: []

UrduNER

This model is a fine-tuned version of urduhack/roberta-urdu-small on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1163
  • Overall Precision: 0.9540
  • Overall Recall: 0.9553
  • Overall F1: 0.9546
  • Overall Accuracy: 0.9836
  • Loc F1: 0.9643
  • Org F1: 0.9448
  • Per F1: 0.9491

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Loc F1 Org F1 Per F1
0.248 1.0 1250 0.0920 0.8906 0.8991 0.8948 0.9687 0.9086 0.8686 0.8995
0.1169 2.0 2500 0.0761 0.9302 0.9390 0.9346 0.9791 0.9501 0.9045 0.9400
0.07 3.0 3750 0.0831 0.9394 0.9451 0.9422 0.9805 0.9505 0.9348 0.9361
0.029 4.0 5000 0.1102 0.9311 0.9431 0.9371 0.9784 0.9469 0.9305 0.9279
0.0134 5.0 6250 0.1225 0.9442 0.9519 0.9480 0.9820 0.9593 0.9438 0.9337
0.0107 6.0 7500 0.1087 0.9515 0.9566 0.9541 0.9837 0.9660 0.9423 0.9466
0.005 7.0 8750 0.1163 0.9540 0.9553 0.9546 0.9836 0.9643 0.9448 0.9491

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3