iva-codeint-swift-small GPT-2 is (small version - 239.4M parameters) trained from scratch to obtain results in the text-to-code task tailored for Swift language used in native mobile development (iOS).

Usage

from transformers import pipeline

pipe = pipeline("text-generation", model="mvasiliniuc/iva-codeint-swift-small")
outputs = pipe("func triggerNSNotification")

Inference

API_URL = "https://api-inference.huggingface.co/models/mvasiliniuc/iva-codeint-swift-small"
headers = {"Authorization": "Bearer <key>"}
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

output = query({
"inputs": """
/* 
A function that gets the current device operating system.
*/
"""
})
pprint.pprint(output, compact=True)

Training

Config Value
seq length 1024
weight decay 0.1
learning rate 0.0005
max eval steps -1
shuffle buffer 10000
max train steps 150000
mixed precision fp16
num warmup steps 2000
train batch size 5
valid batch size 5
lr scheduler type cosine
save checkpoint steps 15000
gradient checkpointing false
gradient accumulation steps 1

Resources

Resources used for research:

Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train mvasiliniuc/iva-codeint-swift-small