mukel's picture
Update README.md
ea0d3a4 verified
|
raw
history blame
1.74 kB
---
library_name: yi.java
license: apache-2.0
base_model: 01-ai/Yi-Coder-1.5B-Chat
pipeline_tag: text-generation
quantized_by: mukel
tags:
- java
- yi
- llama3.java
- yi.java
- code
---
# GGUF models for yi.java
Pure .gguf `Q4_0` and `Q8_0` quantizations of 01.ai Yi models, ready to consume by [yi.java](https://github.com/mukel/yi.java).
In the wild, `Q8_0` quantizations are fine, but `Q4_0` quantizations are rarely pure e.g. the `output.weights` tensor is quantized with `Q6_K`, instead of `Q4_0`.
A pure `Q4_0` quantization can be generated from a high precision (F32, F16, BFLOAT16) .gguf source with the `llama-quantize` utility from llama.cpp as follows:
```
./llama-quantize --pure ./Yi-Coder-1.5B-Chat-F32.gguf ./Yi-Coder-1.5B-Chat-Q4_0.gguf Q4_0
```
# Intro
Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters.
Key features:
- Excelling in long-context understanding with a maximum context length of 128K tokens.
- Supporting 52 major programming languages:
```bash
'java', 'markdown', 'python', 'php', 'javascript', 'c++', 'c#', 'c', 'typescript', 'html', 'go', 'java_server_pages', 'dart', 'objective-c', 'kotlin', 'tex', 'swift', 'ruby', 'sql', 'rust', 'css', 'yaml', 'matlab', 'lua', 'json', 'shell', 'visual_basic', 'scala', 'rmarkdown', 'pascal', 'fortran', 'haskell', 'assembly', 'perl', 'julia', 'cmake', 'groovy', 'ocaml', 'powershell', 'elixir', 'clojure', 'makefile', 'coffeescript', 'erlang', 'lisp', 'toml', 'batchfile', 'cobol', 'dockerfile', 'r', 'prolog', 'verilog'
```
For model details and benchmarks, see [Yi-Coder blog](https://01-ai.github.io/) and [Yi-Coder README](https://github.com/01-ai/Yi-Coder).