metadata
tags:
- generated_from_trainer
datasets:
- mlsum
metrics:
- rouge
model-index:
- name: eval-bart-turkish
results:
- task:
name: Summarization
type: summarization
dataset:
name: mlsum tu
type: mlsum
args: tu
metrics:
- name: Rouge1
type: rouge
value: 43.2049
mukayese/bart-turkish-mlsum
This model is a initialized from scratch and trained only the mlsum/tu dataset with no pre-training.
It achieves the following results on the evaluation set:
- Rouge1: 43.2049
- Rouge2: 30.7082
- Rougel: 38.1981
- Rougelsum: 39.9453
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
4.4304 | 1.0 | 3895 | 4.3749 | 33.2844 | 22.8262 | 29.9423 | 30.7953 | 19.7732 |
3.65 | 2.0 | 7790 | 3.7414 | 33.8392 | 23.517 | 30.4871 | 31.3309 | 19.9031 |
3.397 | 3.0 | 11685 | 3.5651 | 34.2335 | 23.9113 | 30.9237 | 31.7434 | 19.894 |
3.2202 | 4.0 | 15580 | 3.5054 | 34.2535 | 23.9595 | 30.9811 | 31.7961 | 19.9212 |
3.0827 | 5.0 | 19475 | 3.4547 | 34.5545 | 24.1991 | 31.2609 | 32.085 | 19.9195 |
2.9801 | 6.0 | 23370 | 3.4328 | 34.6721 | 24.2537 | 31.372 | 32.1777 | 19.9331 |
2.8689 | 7.0 | 27265 | 3.4377 | 34.6764 | 24.3314 | 31.4376 | 32.1981 | 19.9278 |
2.7813 | 8.0 | 31160 | 3.4407 | 34.746 | 24.345 | 31.4511 | 32.2708 | 19.9468 |
2.6848 | 9.0 | 35055 | 3.4539 | 34.7376 | 24.3224 | 31.4784 | 32.2817 | 19.9096 |
2.5974 | 10.0 | 38950 | 3.4683 | 34.9174 | 24.4716 | 31.5641 | 32.4039 | 19.9384 |
2.5228 | 11.0 | 42845 | 3.4903 | 34.9845 | 24.4972 | 31.6585 | 32.4753 | 19.93 |
2.4633 | 12.0 | 46740 | 3.5105 | 34.8496 | 24.3559 | 31.5256 | 32.3635 | 19.9275 |
2.4022 | 13.0 | 50635 | 3.5234 | 34.9109 | 24.4008 | 31.5449 | 32.4021 | 19.9374 |
2.3605 | 14.0 | 54530 | 3.5306 | 34.9545 | 24.4365 | 31.6208 | 32.4711 | 19.9366 |
2.3216 | 15.0 | 58425 | 3.5379 | 34.9079 | 24.4077 | 31.5734 | 32.4287 | 19.9365 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.8.2+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3