|
--- |
|
widget: |
|
- text: " Исмоили Сомонӣ - намояндаи бузурги форсу-тоҷик" |
|
- text: "Ин фурудгоҳ дар кишвари Индонезия қарор дорад." |
|
- text: " Бобоҷон Ғафуров – солҳои 1946-1956" |
|
- text: " Лоиқ Шералӣ дар васфи Модар шеър" |
|
|
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: tajberto-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann |
|
type: wikiann |
|
config: tg |
|
split: train+test |
|
args: tg |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.576 |
|
- name: Recall |
|
type: recall |
|
value: 0.6923076923076923 |
|
- name: F1 |
|
type: f1 |
|
value: 0.62882096069869 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8934049079754601 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tajberto-ner |
|
|
|
This model is a fine-tuned version of [muhtasham/TajBERTo](https://huggingface.co./muhtasham/TajBERTo) on the wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6129 |
|
- Precision: 0.576 |
|
- Recall: 0.6923 |
|
- F1: 0.6288 |
|
- Accuracy: 0.8934 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 2.0 | 50 | 0.6171 | 0.1667 | 0.2885 | 0.2113 | 0.7646 | |
|
| No log | 4.0 | 100 | 0.4733 | 0.2824 | 0.4615 | 0.3504 | 0.8344 | |
|
| No log | 6.0 | 150 | 0.3857 | 0.3372 | 0.5577 | 0.4203 | 0.8589 | |
|
| No log | 8.0 | 200 | 0.4523 | 0.4519 | 0.5865 | 0.5105 | 0.8765 | |
|
| No log | 10.0 | 250 | 0.3870 | 0.44 | 0.6346 | 0.5197 | 0.8834 | |
|
| No log | 12.0 | 300 | 0.4512 | 0.5267 | 0.6635 | 0.5872 | 0.8865 | |
|
| No log | 14.0 | 350 | 0.4934 | 0.4789 | 0.6538 | 0.5528 | 0.8819 | |
|
| No log | 16.0 | 400 | 0.4924 | 0.4783 | 0.6346 | 0.5455 | 0.8842 | |
|
| No log | 18.0 | 450 | 0.5355 | 0.4595 | 0.6538 | 0.5397 | 0.8788 | |
|
| 0.1682 | 20.0 | 500 | 0.5440 | 0.5547 | 0.6827 | 0.6121 | 0.8942 | |
|
| 0.1682 | 22.0 | 550 | 0.5299 | 0.5794 | 0.7019 | 0.6348 | 0.9003 | |
|
| 0.1682 | 24.0 | 600 | 0.5735 | 0.5691 | 0.6731 | 0.6167 | 0.8926 | |
|
| 0.1682 | 26.0 | 650 | 0.6027 | 0.5833 | 0.6731 | 0.6250 | 0.8796 | |
|
| 0.1682 | 28.0 | 700 | 0.6119 | 0.568 | 0.6827 | 0.6201 | 0.8934 | |
|
| 0.1682 | 30.0 | 750 | 0.6098 | 0.5635 | 0.6827 | 0.6174 | 0.8911 | |
|
| 0.1682 | 32.0 | 800 | 0.6237 | 0.5469 | 0.6731 | 0.6034 | 0.8834 | |
|
| 0.1682 | 34.0 | 850 | 0.6215 | 0.5530 | 0.7019 | 0.6186 | 0.8842 | |
|
| 0.1682 | 36.0 | 900 | 0.6179 | 0.5802 | 0.7308 | 0.6468 | 0.8888 | |
|
| 0.1682 | 38.0 | 950 | 0.6201 | 0.5373 | 0.6923 | 0.6050 | 0.8873 | |
|
| 0.0007 | 40.0 | 1000 | 0.6114 | 0.5952 | 0.7212 | 0.6522 | 0.8911 | |
|
| 0.0007 | 42.0 | 1050 | 0.6073 | 0.5625 | 0.6923 | 0.6207 | 0.8896 | |
|
| 0.0007 | 44.0 | 1100 | 0.6327 | 0.5620 | 0.6538 | 0.6044 | 0.8896 | |
|
| 0.0007 | 46.0 | 1150 | 0.6129 | 0.576 | 0.6923 | 0.6288 | 0.8934 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.2 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.4.0 |
|
- Tokenizers 0.12.1 |
|
|