muhtasham's picture
update model card README.md
fd08ecd
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - wikiann
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-small-uncased-tajik-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: wikiann
          type: wikiann
          config: tg
          split: train+test
          args: tg
        metrics:
          - name: Precision
            type: precision
            value: 0.43884892086330934
          - name: Recall
            type: recall
            value: 0.5865384615384616
          - name: F1
            type: f1
            value: 0.5020576131687243
          - name: Accuracy
            type: accuracy
            value: 0.8269739327540612

bert-small-uncased-tajik-ner

This model is a fine-tuned version of google/bert_uncased_L-4_H-512_A-8 on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1663
  • Precision: 0.4388
  • Recall: 0.5865
  • F1: 0.5021
  • Accuracy: 0.8270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 50 1.1113 0.0238 0.0481 0.0318 0.5984
No log 4.0 100 0.9179 0.0976 0.1538 0.1194 0.6547
No log 6.0 150 0.9254 0.08 0.1538 0.1053 0.6634
No log 8.0 200 0.6607 0.1299 0.2212 0.1637 0.7707
No log 10.0 250 0.6514 0.2583 0.375 0.3059 0.7896
No log 12.0 300 0.6213 0.2836 0.3654 0.3193 0.8058
No log 14.0 350 0.6696 0.3611 0.5 0.4194 0.8100
No log 16.0 400 0.7094 0.3893 0.4904 0.4340 0.8187
No log 18.0 450 0.7557 0.38 0.5481 0.4488 0.8243
0.5061 20.0 500 0.7409 0.4222 0.5481 0.4770 0.8342
0.5061 22.0 550 0.8003 0.4196 0.5769 0.4858 0.8349
0.5061 24.0 600 0.8173 0.4275 0.5673 0.4876 0.8342
0.5061 26.0 650 0.7942 0.4225 0.5769 0.4878 0.8323
0.5061 28.0 700 0.8565 0.4067 0.5865 0.4803 0.8281
0.5061 30.0 750 0.8040 0.4388 0.5865 0.5021 0.8406
0.5061 32.0 800 0.9251 0.4286 0.5769 0.4918 0.8368
0.5061 34.0 850 0.8421 0.4196 0.5769 0.4858 0.8394
0.5061 36.0 900 0.8608 0.4207 0.5865 0.4900 0.8330
0.5061 38.0 950 0.8622 0.5333 0.6154 0.5714 0.8489
0.0304 40.0 1000 0.9901 0.4306 0.5962 0.5000 0.8240
0.0304 42.0 1050 0.9677 0.4286 0.6058 0.5020 0.8345
0.0304 44.0 1100 0.9203 0.4429 0.5962 0.5082 0.8440
0.0304 46.0 1150 0.9368 0.4559 0.5962 0.5167 0.8428
0.0304 48.0 1200 0.9747 0.4420 0.5865 0.5041 0.8342
0.0304 50.0 1250 0.9033 0.4266 0.5865 0.4939 0.8360
0.0304 52.0 1300 0.9242 0.4806 0.5962 0.5322 0.8519
0.0304 54.0 1350 0.9496 0.4150 0.5865 0.4861 0.8406
0.0304 56.0 1400 1.0157 0.4388 0.5865 0.5021 0.8274
0.0304 58.0 1450 1.0069 0.3789 0.5865 0.4604 0.8357
0.0041 60.0 1500 1.0159 0.4593 0.5962 0.5188 0.8413
0.0041 62.0 1550 1.0138 0.488 0.5865 0.5328 0.8428
0.0041 64.0 1600 1.0406 0.4526 0.5962 0.5145 0.8398
0.0041 66.0 1650 1.0672 0.504 0.6058 0.5502 0.8413
0.0041 68.0 1700 1.0713 0.4257 0.6058 0.5 0.8334
0.0041 70.0 1750 1.0001 0.5079 0.6154 0.5565 0.8515
0.0041 72.0 1800 0.9986 0.4632 0.6058 0.525 0.8451
0.0041 74.0 1850 1.0523 0.4643 0.625 0.5328 0.8357
0.0041 76.0 1900 1.1331 0.4437 0.6058 0.5122 0.8281
0.0041 78.0 1950 1.0217 0.4667 0.6058 0.5272 0.8406
0.0023 80.0 2000 1.0296 0.4519 0.5865 0.5105 0.8372
0.0023 82.0 2050 1.0603 0.5207 0.6058 0.56 0.8512
0.0023 84.0 2100 1.1181 0.4733 0.5962 0.5277 0.8319
0.0023 86.0 2150 1.0858 0.4701 0.6058 0.5294 0.8383
0.0023 88.0 2200 1.0947 0.4779 0.625 0.5417 0.8394
0.0023 90.0 2250 1.0671 0.4539 0.6154 0.5224 0.8391
0.0023 92.0 2300 1.0958 0.4444 0.6154 0.5161 0.8372
0.0023 94.0 2350 1.1221 0.4397 0.5962 0.5061 0.8319
0.0023 96.0 2400 1.0861 0.5 0.6058 0.5478 0.8508
0.0023 98.0 2450 1.1522 0.4545 0.5769 0.5085 0.8258
0.0015 100.0 2500 1.1426 0.4688 0.5769 0.5172 0.8304
0.0015 102.0 2550 1.1663 0.4388 0.5865 0.5021 0.8270

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1