aleph_bert-finetuned-ner
This model is a fine-tuned version of onlplab/alephbert-base on the nemo_corpus dataset. It achieves the following results on the evaluation set:
- Loss: 0.1408
- Precision: 0.8333
- Recall: 0.8262
- F1: 0.8298
- Accuracy: 0.9739
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.042 | 1.0 | 618 | 0.1317 | 0.8198 | 0.8068 | 0.8132 | 0.9720 |
0.0185 | 2.0 | 1236 | 0.1367 | 0.8224 | 0.8214 | 0.8219 | 0.9714 |
0.0185 | 3.0 | 1854 | 0.1408 | 0.8333 | 0.8262 | 0.8298 | 0.9739 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cpu
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for msperka/aleph_bert-finetuned-ner
Base model
onlplab/alephbert-baseEvaluation results
- Precision on nemo_corpusvalidation set self-reported0.833
- Recall on nemo_corpusvalidation set self-reported0.826
- F1 on nemo_corpusvalidation set self-reported0.830
- Accuracy on nemo_corpusvalidation set self-reported0.974