tiny_t / README.md
msaavedra1234's picture
Upload 9 files
a87fb4d
|
raw
history blame
4.42 kB
---
license: apache-2.0
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
tags:
- generated_from_trainer
model-index:
- name: tinyllama-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
eval_sample_packing: False #Poco dato
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: data.json # or json
ds_type: json # see other options below
type: completion
dataset_prepared_path:
val_set_size: 0.05
# output_dir: ./lora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
# adapter: lora
# lora_model_dir:
# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: true
# lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./tinyllama-out
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 8 #2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false #TODO: change to true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
save_strategy: "no"
warmup_steps: 10
evals_per_epoch: 4
# saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# tinyllama-out
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co./TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8806
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9894 | 0.13 | 1 | 1.5790 |
| 1.915 | 0.26 | 2 | 1.4849 |
| 1.642 | 0.52 | 4 | 1.4032 |
| 1.5396 | 0.77 | 6 | 1.4059 |
| 1.3746 | 1.03 | 8 | 1.4101 |
| 0.9355 | 1.23 | 10 | 1.5147 |
| 0.9266 | 1.48 | 12 | 1.5291 |
| 0.8006 | 1.74 | 14 | 1.4724 |
| 0.7664 | 2.0 | 16 | 1.4965 |
| 0.4813 | 2.16 | 18 | 1.5715 |
| 0.4193 | 2.42 | 20 | 1.5436 |
| 0.364 | 2.68 | 22 | 1.6040 |
| 0.3592 | 2.94 | 24 | 1.5823 |
| 0.1884 | 3.13 | 26 | 1.6850 |
| 0.159 | 3.39 | 28 | 1.8316 |
| 0.1641 | 3.65 | 30 | 1.7286 |
| 0.1512 | 3.9 | 32 | 1.7029 |
| 0.1563 | 4.06 | 34 | 1.7033 |
| 0.0696 | 4.32 | 36 | 1.7482 |
| 0.0643 | 4.58 | 38 | 1.8069 |
| 0.0662 | 4.84 | 40 | 1.8410 |
| 0.0709 | 5.1 | 42 | 1.8529 |
| 0.0344 | 5.26 | 44 | 1.8626 |
| 0.0468 | 5.52 | 46 | 1.8716 |
| 0.0328 | 5.77 | 48 | 1.8761 |
| 0.0353 | 6.03 | 50 | 1.8789 |
| 0.0375 | 6.23 | 52 | 1.8803 |
| 0.0345 | 6.48 | 54 | 1.8802 |
| 0.0346 | 6.74 | 56 | 1.8806 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0