mrisdi's picture
End of training
152faad verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: emotion_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5125

emotion_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3578
  • Accuracy: 0.5125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0796 1.0 10 2.0709 0.1562
2.0631 2.0 20 2.0496 0.225
2.0242 3.0 30 2.0148 0.2875
1.9387 4.0 40 1.9268 0.325
1.789 5.0 50 1.7454 0.3812
1.6216 6.0 60 1.5996 0.3937
1.4795 7.0 70 1.5577 0.375
1.3735 8.0 80 1.5090 0.4062
1.2889 9.0 90 1.4418 0.4313
1.2092 10.0 100 1.4209 0.425
1.1127 11.0 110 1.3828 0.4437
1.032 12.0 120 1.3507 0.4562
0.9616 13.0 130 1.3556 0.4875
0.9099 14.0 140 1.3204 0.5188
0.8425 15.0 150 1.3490 0.4688
0.806 16.0 160 1.3690 0.5062
0.7377 17.0 170 1.3344 0.5563
0.677 18.0 180 1.4178 0.4625
0.6071 19.0 190 1.3305 0.4875
0.5581 20.0 200 1.3070 0.5
0.5599 21.0 210 1.3245 0.4938
0.5222 22.0 220 1.3765 0.4562
0.4856 23.0 230 1.3345 0.5
0.458 24.0 240 1.2938 0.5188
0.4393 25.0 250 1.3380 0.5062
0.4239 26.0 260 1.3756 0.525
0.4443 27.0 270 1.4586 0.4813
0.4374 28.0 280 1.2996 0.55
0.3917 29.0 290 1.3222 0.5062
0.3986 30.0 300 1.4486 0.4813
0.353 31.0 310 1.5204 0.4562
0.3598 32.0 320 1.3027 0.5625
0.3538 33.0 330 1.6122 0.4313
0.3246 34.0 340 1.5237 0.4437
0.3089 35.0 350 1.4717 0.5125
0.3278 36.0 360 1.5666 0.45
0.2865 37.0 370 1.4377 0.5
0.2958 38.0 380 1.4766 0.4938
0.3036 39.0 390 1.5345 0.4375
0.286 40.0 400 1.4174 0.5062
0.3099 41.0 410 1.4087 0.4625
0.2801 42.0 420 1.4439 0.4813
0.2973 43.0 430 1.4712 0.4938
0.2892 44.0 440 1.4099 0.5188
0.2835 45.0 450 1.3011 0.5563
0.261 46.0 460 1.6512 0.4188
0.2589 47.0 470 1.5651 0.4375
0.2806 48.0 480 1.5194 0.4938
0.2749 49.0 490 1.4519 0.525
0.2482 50.0 500 1.4127 0.5188

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1