See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: NousResearch/Yarn-Llama-2-7b-128k
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- cff7ac798e6d5dcd_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cff7ac798e6d5dcd_train_data.json
type:
field_input: input
field_instruction: instruction
field_output: response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/b66756af-9ce0-428c-afcd-509c8a65e711
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/cff7ac798e6d5dcd_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: cf8d9384-56f2-40e9-8877-64c5c8e6e996
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: cf8d9384-56f2-40e9-8877-64c5c8e6e996
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
b66756af-9ce0-428c-afcd-509c8a65e711
This model is a fine-tuned version of NousResearch/Yarn-Llama-2-7b-128k on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5108
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 212
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0029 | 1 | 2.6011 |
No log | 0.1178 | 40 | 2.1022 |
No log | 0.2356 | 80 | 1.6311 |
4.1759 | 0.3535 | 120 | 1.4511 |
4.1759 | 0.4713 | 160 | 1.3336 |
2.8347 | 0.5891 | 200 | 1.2712 |
2.8347 | 0.7069 | 240 | 1.2134 |
2.8347 | 0.8247 | 280 | 1.1423 |
2.5511 | 0.9426 | 320 | 1.0515 |
2.5511 | 1.0604 | 360 | 1.0495 |
1.8608 | 1.1782 | 400 | 0.9674 |
1.8608 | 1.2960 | 440 | 0.8957 |
1.8608 | 1.4138 | 480 | 0.8620 |
1.5922 | 1.5317 | 520 | 0.8250 |
1.5922 | 1.6495 | 560 | 0.7791 |
1.4457 | 1.7673 | 600 | 0.7836 |
1.4457 | 1.8851 | 640 | 0.7161 |
1.4457 | 2.0029 | 680 | 0.6826 |
1.2167 | 2.1208 | 720 | 0.6942 |
1.2167 | 2.2386 | 760 | 0.6890 |
0.813 | 2.3564 | 800 | 0.6791 |
0.813 | 2.4742 | 840 | 0.6476 |
0.813 | 2.5920 | 880 | 0.6133 |
0.8131 | 2.7099 | 920 | 0.5796 |
0.8131 | 2.8277 | 960 | 0.5654 |
0.7533 | 2.9455 | 1000 | 0.5553 |
0.7533 | 3.0633 | 1040 | 0.5500 |
0.7533 | 3.1811 | 1080 | 0.5648 |
0.4819 | 3.2990 | 1120 | 0.5604 |
0.4819 | 3.4168 | 1160 | 0.5394 |
0.4436 | 3.5346 | 1200 | 0.5321 |
0.4436 | 3.6524 | 1240 | 0.5429 |
0.4436 | 3.7703 | 1280 | 0.5055 |
0.5149 | 3.8881 | 1320 | 0.5246 |
0.5149 | 4.0059 | 1360 | 0.4923 |
0.3846 | 4.1237 | 1400 | 0.5086 |
0.3846 | 4.2415 | 1440 | 0.4987 |
0.3846 | 4.3594 | 1480 | 0.5108 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 11
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/b66756af-9ce0-428c-afcd-509c8a65e711
Base model
NousResearch/Yarn-Llama-2-7b-128k