Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: false
base_model: Qwen/Qwen2.5-1.5B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - dd39f638a84431cb_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/dd39f638a84431cb_train_data.json
  type:
    field_instruction: instruction
    field_output: prompt
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 17
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 6
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/372f94d6-bf18-4a6e-9232-6e9a04f5d226
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 17
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 
micro_batch_size: 12
mlflow_experiment_name: /tmp/dd39f638a84431cb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 17
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: .10000000
wandb_entity: null
wandb_mode: 
wandb_name: 618c487b-3dbf-4791-a39a-d50d7294b4c2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 618c487b-3dbf-4791-a39a-d50d7294b4c2
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

372f94d6-bf18-4a6e-9232-6e9a04f5d226

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1308

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 72
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0286 1 2.6912
2.6955 0.4857 17 2.6122
2.5215 0.9714 34 2.3366
2.1726 1.4571 51 1.9901
1.8983 1.9429 68 1.6772
1.5215 2.4286 85 1.3927
1.3127 2.9143 102 1.1804
1.0685 3.4 119 1.0317
0.9234 3.8857 136 0.8665
0.7219 4.3714 153 0.7275
0.5793 4.8571 170 0.6129
0.4619 5.3429 187 0.4976
0.3749 5.8286 204 0.4233
0.2555 6.3143 221 0.3517
0.2266 6.8 238 0.2796
0.1659 7.2857 255 0.2460
0.1285 7.7714 272 0.2215
0.1081 8.2571 289 0.1978
0.0897 8.7429 306 0.1749
0.069 9.2286 323 0.1605
0.0633 9.7143 340 0.1486
0.0604 10.2 357 0.1447
0.0483 10.6857 374 0.1408
0.0474 11.1714 391 0.1403
0.0395 11.6571 408 0.1299
0.0403 12.1429 425 0.1329
0.0338 12.6286 442 0.1329
0.0341 13.1143 459 0.1308

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/372f94d6-bf18-4a6e-9232-6e9a04f5d226

Base model

Qwen/Qwen2.5-1.5B
Adapter
(382)
this model