See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: false
base_model: Qwen/Qwen2.5-1.5B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- dd39f638a84431cb_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/dd39f638a84431cb_train_data.json
type:
field_instruction: instruction
field_output: prompt
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 1.0e-05
eval_max_new_tokens: 128
eval_steps: 17
eval_strategy: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 6
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/372f94d6-bf18-4a6e-9232-6e9a04f5d226
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 17
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 12
mlflow_experiment_name: /tmp/dd39f638a84431cb_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 17
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: .10000000
wandb_entity: null
wandb_mode:
wandb_name: 618c487b-3dbf-4791-a39a-d50d7294b4c2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 618c487b-3dbf-4791-a39a-d50d7294b4c2
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
372f94d6-bf18-4a6e-9232-6e9a04f5d226
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1308
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 72
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0286 | 1 | 2.6912 |
2.6955 | 0.4857 | 17 | 2.6122 |
2.5215 | 0.9714 | 34 | 2.3366 |
2.1726 | 1.4571 | 51 | 1.9901 |
1.8983 | 1.9429 | 68 | 1.6772 |
1.5215 | 2.4286 | 85 | 1.3927 |
1.3127 | 2.9143 | 102 | 1.1804 |
1.0685 | 3.4 | 119 | 1.0317 |
0.9234 | 3.8857 | 136 | 0.8665 |
0.7219 | 4.3714 | 153 | 0.7275 |
0.5793 | 4.8571 | 170 | 0.6129 |
0.4619 | 5.3429 | 187 | 0.4976 |
0.3749 | 5.8286 | 204 | 0.4233 |
0.2555 | 6.3143 | 221 | 0.3517 |
0.2266 | 6.8 | 238 | 0.2796 |
0.1659 | 7.2857 | 255 | 0.2460 |
0.1285 | 7.7714 | 272 | 0.2215 |
0.1081 | 8.2571 | 289 | 0.1978 |
0.0897 | 8.7429 | 306 | 0.1749 |
0.069 | 9.2286 | 323 | 0.1605 |
0.0633 | 9.7143 | 340 | 0.1486 |
0.0604 | 10.2 | 357 | 0.1447 |
0.0483 | 10.6857 | 374 | 0.1408 |
0.0474 | 11.1714 | 391 | 0.1403 |
0.0395 | 11.6571 | 408 | 0.1299 |
0.0403 | 12.1429 | 425 | 0.1329 |
0.0338 | 12.6286 | 442 | 0.1329 |
0.0341 | 13.1143 | 459 | 0.1308 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/372f94d6-bf18-4a6e-9232-6e9a04f5d226
Base model
Qwen/Qwen2.5-1.5B