base_model: werty1248/Mistral-Nemo-NT-Ko-12B-sft
datasets:
- 4DR1455/finance_questions
- Aratako/Synthetic-JP-Conversations-Magpie-Nemotron-4-10k
- Aratako/Synthetic-JP-EN-Coding-Dataset-Magpie-69k
- Aratako/Synthetic-Japanese-Roleplay-NSFW-Claude-3.5s-10.5k-formatted
- BCCard/BCCard-Finance-Kor-QnA
- CarrotAI/ko-code-alpaca-QA
- ChuGyouk/AI_healthcare_QA_samples_Sonnet3.5
- DavidLanz/medical_instruction
- Dusker/lawyer-llama
- Gryphe/Sonnet3.5-Charcard-Roleplay
- HAERAE-HUB/qarv-instruct-ko
- HachiML/alpaca_jp_math
- Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-v0.1
- Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese
- beomi/KoAlpaca-v1.1a
- codefuse-ai/Evol-instruction-66k
- frankminors123/belle-math-zh
- gbharti/wealth-alpaca_lora
- iam-ajaymeena/Self-Instruct-Japanese-Elzya-13B
- jihye-moon/LawQA-Ko
- jondurbin/gutenberg-dpo-v0.1
- junyeong-nero/kin_med_100K_edited
- kyujinpy/KOR-OpenOrca-Platypus-v3
- lavita/medical-qa-datasets
- microsoft/orca-math-word-problems-200k
- neural-bridge/rag-dataset-12000
- p1atdev/ichikara-instruction
- qiaojin/PubMedQA
- shibing624/roleplay-zh-sharegpt-gpt4-data
- team-hatakeyama-phase2/AutoMultiTurnByCalm3-22B-Corrected-reformatted
- ymoslem/Law-StackExchange
- zzunyang/LawQA_LawSee
language:
- en
- ko
- ja
- zh
library_name: transformers
license: apache-2.0
quantized_by: mradermacher
About
static quants of https://huggingface.co./werty1248/Mistral-Nemo-NT-Ko-12B-sft
weighted/imatrix quants are available at https://huggingface.co./mradermacher/Mistral-Nemo-NT-Ko-12B-sft-i1-GGUF
Usage
If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.
Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Link | Type | Size/GB | Notes |
---|---|---|---|
GGUF | Q2_K | 4.9 | |
GGUF | IQ3_XS | 5.4 | |
GGUF | Q3_K_S | 5.6 | |
GGUF | IQ3_S | 5.7 | beats Q3_K* |
GGUF | IQ3_M | 5.8 | |
GGUF | Q3_K_M | 6.2 | lower quality |
GGUF | Q3_K_L | 6.7 | |
GGUF | IQ4_XS | 6.9 | |
GGUF | Q4_K_S | 7.2 | fast, recommended |
GGUF | Q4_K_M | 7.6 | fast, recommended |
GGUF | Q5_K_S | 8.6 | |
GGUF | Q5_K_M | 8.8 | |
GGUF | Q6_K | 10.2 | very good quality |
GGUF | Q8_0 | 13.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
FAQ / Model Request
See https://huggingface.co./mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.
Thanks
I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.