mradermacher's picture
auto-patch README.md
bbbd518 verified
|
raw
history blame
3.29 kB
---
base_model: sequelbox/Llama3.1-70B-PlumChat
language:
- en
library_name: transformers
license: llama3.1
model_type: llama
quantized_by: mradermacher
tags:
- llama
- llama3.1
- llama3
- meta
- 70b
- science
- physics
- biology
- chemistry
- compsci
- computer-science
- engineering
- logic
- rationality
- advanced
- expert
- technical
- conversational
- chat
- instruct
- mergekit
- merge
---
## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: hf -->
<!-- ### vocab_type: -->
<!-- ### tags: -->
static quants of https://huggingface.co./sequelbox/Llama3.1-70B-PlumChat
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co./TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q2_K.gguf) | Q2_K | 26.5 | |
| [GGUF](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.IQ4_XS.gguf) | IQ4_XS | 38.4 | |
| [GGUF](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q4_K_S.gguf) | Q4_K_S | 40.4 | fast, recommended |
| [GGUF](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q4_K_M.gguf) | Q4_K_M | 42.6 | fast, recommended |
| [GGUF](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q5_K_S.gguf) | Q5_K_S | 48.8 | |
| [GGUF](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q5_K_M.gguf) | Q5_K_M | 50.0 | |
| [PART 1](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q6_K.gguf.part1of2) [PART 2](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q6_K.gguf.part2of2) | Q6_K | 58.0 | very good quality |
| [PART 1](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q8_0.gguf.part1of2) [PART 2](https://huggingface.co./mradermacher/Llama3.1-70B-PlumChat-GGUF/resolve/main/Llama3.1-70B-PlumChat.Q8_0.gguf.part2of2) | Q8_0 | 75.1 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):
![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co./mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->