Model Card for Model ID
How to run in llama.cpp
./main -t 10 -ngl 32 -m persian_llama_7b.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: یک شعر حماسی در مورد کوه دماوند بگو ### Input: ### Response:"
Change -t 10
to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use -t 8
.
Change -ngl 32
to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Tto have a chat-style conversation, replace the -p <PROMPT>
argument with -i -ins
How to run in text-generation-webui
Further instructions here: text-generation-webui/docs/llama.cpp-models.md.
How to run using LangChain
Instalation on CPU
pip install llama-cpp-python
Instalation on GPU
CMAKE_ARGS="-DLLAMA_CUBLAS=on" FORCE_CMAKE=1 pip install llama-cpp-python
from langchain.llms import LlamaCpp
from langchain import PromptTemplate, LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
n_gpu_layers = 40 # Change this value based on your model and your GPU VRAM pool.
n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
n_ctx=2048
callback_manager = CallbackManager([StreamingStdOutCallbackHandler()])
# Make sure the model path is correct for your system!
llm = LlamaCpp(
model_path="./persian_llama_7b.Q4_K_M.gguf",
n_gpu_layers=n_gpu_layers, n_batch=n_batch,
callback_manager=callback_manager,
verbose=True,
n_ctx=n_ctx
)
llm("""### Instruction:
یک شعر حماسی در مورد کوه دماوند بگو
### Input:
### Response:""")
For more information refer LangChain
- Downloads last month
- 129