add text-generation pipeline example with autocast
#25
by
vchiley
- opened
README.md
CHANGED
@@ -119,6 +119,22 @@ from transformers import AutoTokenizer
|
|
119 |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
120 |
```
|
121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
## Model Description
|
123 |
|
124 |
The architecture is a modification of a standard decoder-only transformer.
|
|
|
119 |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
120 |
```
|
121 |
|
122 |
+
The model can then be used, for example, within a text-generation pipeline.
|
123 |
+
Note: when running Torch modules in lower precision, it is best practice to use the [torch.autocast context manager](https://pytorch.org/docs/stable/amp.html).
|
124 |
+
|
125 |
+
```python
|
126 |
+
from transformers import pipeline
|
127 |
+
|
128 |
+
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, device='cuda:0')
|
129 |
+
|
130 |
+
with torch.autocast('cuda', dtype=torch.bfloat16):
|
131 |
+
print(
|
132 |
+
pipe('Here is a recipe for vegan banana bread:\n',
|
133 |
+
max_new_tokens=100,
|
134 |
+
do_sample=True,
|
135 |
+
use_cache=True))
|
136 |
+
```
|
137 |
+
|
138 |
## Model Description
|
139 |
|
140 |
The architecture is a modification of a standard decoder-only transformer.
|