metadata
language:
- en
license: apache-2.0
library_name: transformers
datasets:
- monology/VMware-open-instruct-higgsfield
pipeline_tag: text-generation
model-index:
- name: openinstruct-mistral-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 59.73
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=monology/openinstruct-mistral-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.77
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=monology/openinstruct-mistral-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.55
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=monology/openinstruct-mistral-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.76
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=monology/openinstruct-mistral-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.56
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=monology/openinstruct-mistral-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.49
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=monology/openinstruct-mistral-7b
name: Open LLM Leaderboard
OpenInstruct Mistral-7B
1st among commercially-usable 7B models on the Open LLM Leaderboard!*
This is mistralai/Mistral-7B-v0.1 finetuned on VMware/open-instruct.
Quantized to FP16 and released under the Apache-2.0 license by myself.
Compute generously provided by Higgsfield AI.
Prompt format: Alpaca
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
[your instruction goes here]
### Response:
Recommended preset:
- temperature: 0.2
- top_k: 50
- top_p 0.95
- repetition_penalty: 1.1
*as of 21 Nov 2023. "commercially-usable" includes both an open-source base model and a non-synthetic open-source finetune dataset. updated leaderboard results available here.
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.64 |
AI2 Reasoning Challenge (25-Shot) | 59.73 |
HellaSwag (10-Shot) | 82.77 |
MMLU (5-Shot) | 60.55 |
TruthfulQA (0-shot) | 48.76 |
Winogrande (5-shot) | 79.56 |
GSM8k (5-shot) | 50.49 |