Fine-tuned Wav2Vec2-Large-XLSR-53 large model for speech recognition on Arabic Language
Fine-tuned facebook/wav2vec2-large-xlsr-53
on Arabic using the train
splits of Common Voice
and Arabic Speech Corpus.
When using this model, make sure that your speech input is sampled at 16kHz.
Usage
The model can be used directly (without a language model) as follows:
%%capture
!pip install datasets
!pip install transformers==4.4.0
!pip install torchaudio
!pip install jiwer
!pip install tnkeeh
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ar", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("The predicted sentence is: ", processor.batch_decode(predicted_ids))
print("The original sentence is:", test_dataset["sentence"][:2])
The output is:
The predicted sentence is : ['ألديك قلم', 'ليست نارك مكسافة على هذه الأرض أبعد من يوم أمس']
The original sentence is: ['ألديك قلم ؟', 'ليست هناك مسافة على هذه الأرض أبعد من يوم أمس.']
Evaluation
The model can be evaluated as follows on the Arabic test data of Common Voice:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
# creating a dictionary with all diacritics
dict = {
'ِ': '',
'ُ': '',
'ٓ': '',
'ٰ': '',
'ْ': '',
'ٌ': '',
'ٍ': '',
'ً': '',
'ّ': '',
'َ': '',
'~': '',
',': '',
'ـ': '',
'—': '',
'.': '',
'!': '',
'-': '',
';': '',
':': '',
'\'': '',
'"': '',
'☭': '',
'«': '',
'»': '',
'؛': '',
'ـ': '',
'_': '',
'،': '',
'“': '',
'%': '',
'‘': '',
'”': '',
'�': '',
'_': '',
',': '',
'?': '',
'#': '',
'‘': '',
'.': '',
'؛': '',
'get': '',
'؟': '',
' ': ' ',
'\'ۖ ': '',
'\'': '',
'\'ۚ' : '',
' \'': '',
'31': '',
'24': '',
'39': ''
}
# replacing multiple diacritics using dictionary (stackoverflow is amazing)
def remove_special_characters(batch):
# Create a regular expression from the dictionary keys
regex = re.compile("(%s)" % "|".join(map(re.escape, dict.keys())))
# For each match, look-up corresponding value in dictionary
batch["sentence"] = regex.sub(lambda mo: dict[mo.string[mo.start():mo.end()]], batch["sentence"])
return batch
test_dataset = load_dataset("common_voice", "ar", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
model = Wav2Vec2ForCTC.from_pretrained("mohammed/wav2vec2-large-xlsr-arabic")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
test_dataset = test_dataset.map(remove_special_characters)
# Preprocessing the datasets.
# We need to read the audio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 36.699%
Future Work
One can use data augmentation, transliteration, or attention_mask to increase the accuracy.
- Downloads last month
- 24
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mohammed/wav2vec2-large-xlsr-arabic
Base model
facebook/wav2vec2-large-xlsr-53Datasets used to train mohammed/wav2vec2-large-xlsr-arabic
Evaluation results
- Test WER on Common Voice arself-reported36.699
- Validation WER on Common Voice arself-reported36.699