Usage
from transformers import pipeline
# load model and tokenizer from huggingface hub with pipeline
enhancer = pipeline("summarization", model="mobenta/M_Prompter", device=0)
prompt = "A blue-tinted bedroom scene, surreal and serene, with a mysterious reflected interior."
prefix = "Enhance the description: "
# enhance prompt
res = enhancer(prefix + prompt)
print(res[0]['summary_text'])
Lamini-Prompt-Enchance-Long
This model is a fine-tuned version of MBZUAI/LaMini-Flan-T5-248M on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.1624
- Rouge1: 20.2443
- Rouge2: 9.3642
- Rougel: 17.2484
- Rougelsum: 19.0703
- Gen Len: 19.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.4435 | 1.0 | 2014 | 2.2723 | 20.0108 | 9.2736 | 17.0569 | 18.8171 | 19.0 |
2.341 | 2.0 | 4028 | 2.2120 | 20.4422 | 9.4473 | 17.4347 | 19.2234 | 19.0 |
2.2948 | 3.0 | 6042 | 2.1820 | 20.5645 | 9.5426 | 17.5419 | 19.3714 | 19.0 |
2.2598 | 4.0 | 8056 | 2.1668 | 20.2354 | 9.3639 | 17.2379 | 19.0625 | 19.0 |
2.2431 | 5.0 | 10070 | 2.1624 | 20.2443 | 9.3642 | 17.2484 | 19.0703 | 19.0 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for mobenta/M_Prompter
Base model
MBZUAI/LaMini-Flan-T5-248M