|
--- |
|
license: apache-2.0 |
|
language: |
|
- fr |
|
- it |
|
- de |
|
- es |
|
- en |
|
inference: false |
|
--- |
|
# Model Card for Mixtral-Fusion-4x7B-Instruct-v0.1 |
|
This model is an experimental model created by merging [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co./mistralai/Mixtral-8x7B-Instruct-v0.1) experts. |
|
|
|
# How we merged experts |
|
We simply take the average of every two experts.weight. |
|
The same goes for gate.weight. |
|
|
|
# How To Convert |
|
use colab cpu-high-memory. |
|
[convert_mixtral_8x7b_to_4x7b.ipynb](https://huggingface.co./mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1/blob/main/notebook/convert_mixtral_8x7b_to_4x7b.ipynb) |
|
|
|
# Usage |
|
~~~python |
|
pip install git+https://github.com/huggingface/transformers --upgrade |
|
pip install torch accelerate bitsandbytes flash_attn |
|
~~~ |
|
|
|
~~~python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, MixtralForCausalLM |
|
import torch |
|
|
|
model_name_or_path = "mmnga/Mixtral-Fusion-4x7B-Instruct-v0.1" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) |
|
model = MixtralForCausalLM.from_pretrained(model_name_or_path, load_in_8bit=True) |
|
|
|
# set num_experts_per_tok 1 or 2 ? |
|
model.config.num_experts_per_tok = 2 |
|
|
|
# message |
|
messages = [ |
|
{"role": "user", "content": "Tell me what's for dinner tonight."}, |
|
] |
|
|
|
with torch.no_grad(): |
|
token_ids = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
output_ids = model.generate( |
|
token_ids.to(model.device), |
|
temperature=0.5, |
|
do_sample=True, |
|
top_p=0.95, |
|
top_k=40, |
|
max_new_tokens=128, |
|
repetition_penalty=1.5 |
|
) |
|
output = tokenizer.decode(output_ids[0][token_ids.size(1) :]) |
|
print(output) |
|
|
|
~~~ |