|
--- |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- preprocessed1024_config |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: convnext-mlo-512-breat_composition |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: preprocessed1024_config |
|
type: preprocessed1024_config |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: |
|
accuracy: 0.5785175879396985 |
|
- name: F1 |
|
type: f1 |
|
value: |
|
f1: 0.565251065728165 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# convnext-mlo-512-breat_composition |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co./) on the preprocessed1024_config dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1521 |
|
- Accuracy: {'accuracy': 0.5785175879396985} |
|
- F1: {'f1': 0.565251065728165} |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------------------------:|:---------------------------:| |
|
| 1.3433 | 1.0 | 796 | 1.1893 | {'accuracy': 0.4566582914572864} | {'f1': 0.32080438921262083} | |
|
| 1.1242 | 2.0 | 1592 | 1.0867 | {'accuracy': 0.48555276381909546} | {'f1': 0.4061780745199038} | |
|
| 1.0569 | 3.0 | 2388 | 1.1587 | {'accuracy': 0.49120603015075376} | {'f1': 0.40970823779940124} | |
|
| 0.9327 | 4.0 | 3184 | 0.9901 | {'accuracy': 0.5452261306532663} | {'f1': 0.4885626990630958} | |
|
| 0.8723 | 5.0 | 3980 | 0.9824 | {'accuracy': 0.5728643216080402} | {'f1': 0.5365052338942904} | |
|
| 0.7803 | 6.0 | 4776 | 1.0071 | {'accuracy': 0.571608040201005} | {'f1': 0.5246756181464156} | |
|
| 0.7198 | 7.0 | 5572 | 1.0233 | {'accuracy': 0.5741206030150754} | {'f1': 0.5405969058526473} | |
|
| 0.6589 | 8.0 | 6368 | 1.0902 | {'accuracy': 0.5816582914572864} | {'f1': 0.5421523761661359} | |
|
| 0.6055 | 9.0 | 7164 | 1.0980 | {'accuracy': 0.5835427135678392} | {'f1': 0.5601877104043351} | |
|
| 0.5722 | 10.0 | 7960 | 1.1521 | {'accuracy': 0.5785175879396985} | {'f1': 0.565251065728165} | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.12.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|