metadata
license: bigcode-openrail-m
library_name: transformers
tags:
- code
- mlx
datasets:
- bigcode/the-stack-v2-train
pipeline_tag: text-generation
inference: true
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
model-index:
- name: starcoder2-3b
results:
- task:
type: text-generation
dataset:
name: CruxEval-I
type: cruxeval-i
metrics:
- type: pass@1
value: 32.7
- task:
type: text-generation
dataset:
name: DS-1000
type: ds-1000
metrics:
- type: pass@1
value: 25
- task:
type: text-generation
dataset:
name: GSM8K (PAL)
type: gsm8k-pal
metrics:
- type: accuracy
value: 27.7
- task:
type: text-generation
dataset:
name: HumanEval+
type: humanevalplus
metrics:
- type: pass@1
value: 27.4
- task:
type: text-generation
dataset:
name: HumanEval
type: humaneval
metrics:
- type: pass@1
value: 31.7
- task:
type: text-generation
dataset:
name: RepoBench-v1.1
type: repobench-v1.1
metrics:
- type: edit-smiliarity
value: 71.19
mlx-community/starcoder2-3b-4bit
This model was converted to MLX format from bigcode/starcoder2-3b
.
Refer to the original model card for more details on the model.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/starcoder2-3b-4bit")
response = generate(model, tokenizer, prompt="hello", verbose=True)