plamo-2-1b-bf16 / modeling_plamo.py
mitmul's picture
Add files using upload-large-folder tool
ce95292 verified
raw
history blame
66.2 kB
import enum
import math
import warnings
from typing import Any, Dict, List, Literal, NamedTuple, Optional, Tuple, Union
try:
# It is difficult to install mamba_ssm in login node because
# it requires GPU for installation
import mamba_ssm
except ModuleNotFoundError:
warnings.warn("mamba_ssm could not be imported", stacklevel=2)
try:
# It is difficult to install causal_conv1d in login node because
# it requires GPU for installation
import causal_conv1d.causal_conv1d_interface as causal_conv1d
except ModuleNotFoundError:
warnings.warn("causal_conv1d could not be imported", stacklevel=2)
import torch
from torch import nn
from torch.nn import functional as F
from transformers import PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
def _is_first_token(mask: torch.Tensor) -> torch.Tensor:
assert mask.dtype == torch.bool
B, Nh, q_len, kv_len = mask.shape
mask = mask[:, :, :, -q_len:]
cont = q_len != kv_len
v = False if cont else True
out = torch.logical_not(torch.diagonal(mask, offset=-1, dim1=-2, dim2=-1).bool())
out = torch.cat(
[
torch.full(size=(B, Nh, 1), dtype=torch.bool, device=out.device, fill_value=v),
out,
],
dim=-1,
)
return out
def _swiglu(h: torch.Tensor) -> torch.Tensor:
h0, h1 = h.chunk(2, dim=-1)
return torch.nn.functional.silu(h0) * h1
class RotaryEmbedding(torch.nn.Module):
def __init__(
self, dim: int, max_position_embeddings: int = 2048, base: int = 10000, device: Optional[torch.device] = None
) -> None:
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
)
def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None:
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) # type: ignore
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]:
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
)
def _rotate_half(x: torch.Tensor) -> torch.Tensor:
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def _rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor:
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
x_embed = (x * cos) + (_rotate_half(x) * sin)
return x_embed
class LinearType(str, enum.Enum):
Normal = "normal"
Fp8 = "fp8"
Fp8Retain = "fp8-retain"
class PlamoConfig(PretrainedConfig): # type: ignore
model_type: str = "plamo"
def __init__(
self,
hidden_size: int = 4096,
num_hidden_layers: int = 32,
rms_norm_eps: float = 1e-6,
tie_word_embeddings: bool = True,
# Attention
num_attention_heads: int = 32,
num_key_value_heads: int = 4,
hidden_size_per_head: int = 128,
max_position_embeddings: int = 2048,
attention_window_size: int = 2048,
full_attention_idx: list[int] | None = None,
# Mamba
mamba_d_state: int = 64,
mamba_d_conv: int = 4,
mamba_num_heads: int = 64,
mamba_step: int = 2,
mamba_chunk_size: int = 256,
mamba_enabled: bool = True,
# MLP
intermediate_size: int = 13312,
# Tokenizer
vocab_size: int = 32000,
tokenizer_class: str = "PlamoTokenizer",
pad_token_id: Optional[int] = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
# Multimodal
image_token_id: Optional[int] = None,
image_feature_size: Optional[int] = None,
image_proj_type: Literal["linear", "mlp"] = "linear",
# FP8
linear_type: LinearType = LinearType.Normal,
fp8_accum_dtype: Optional[str] = None,
# Evaluation
eval_attention_n_bit: Optional[int] = None,
eval_mlp_n_bit: Optional[int] = None,
use_cache: bool = True,
**kwargs: Any,
) -> None:
# max_position_embeddings is often used to determine the max length during inference,
# but samba should have extrapolation abilities
self.max_position_embeddings = max(10 * 1024 * 1024, max_position_embeddings)
self.hidden_size = hidden_size
self.rms_norm_eps = rms_norm_eps
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_size_per_head = hidden_size_per_head
self.num_key_value_heads = num_key_value_heads
self.attention_window_size = attention_window_size
self.full_attention_idx = full_attention_idx if full_attention_idx is not None else []
self.mamba_d_state = mamba_d_state
self.mamba_d_conv = mamba_d_conv
self.mamba_num_heads = mamba_num_heads
self.mamba_step = mamba_step
self.mamba_chunk_size = mamba_chunk_size
self.mamba_enabled = mamba_enabled
self.intermediate_size = intermediate_size
self.vocab_size = vocab_size
self.image_token_id = image_token_id
self.image_feature_size = image_feature_size
self.image_proj_type = image_proj_type
self.linear_type = linear_type
self.fp8_accum_dtype = fp8_accum_dtype
self.eval_attention_n_bit = eval_attention_n_bit
self.eval_mlp_n_bit = eval_mlp_n_bit
self.use_cache = use_cache
# fields for vLLM
self.sliding_window = attention_window_size
super().__init__(
tokenizer_class=tokenizer_class,
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class PlamoAttentionCache(torch.nn.Module):
def __init__(self, key: torch.Tensor, value: torch.Tensor) -> None:
super().__init__()
B, nh, L, c = key.shape
assert len(value.shape) == 4
assert value.shape[0] == B
assert value.shape[2] == L
self.register_parameter("key", torch.nn.Parameter(key, requires_grad=False))
self.register_parameter("value", torch.nn.Parameter(value, requires_grad=False))
class PlamoMambaCache(torch.nn.Module):
def __init__(self, conv_state: torch.Tensor, ssm_state: torch.Tensor) -> None:
super().__init__()
# conv_state: [B, C, d_conv]
# ssm_state: [B, nhead, nchanel_per_head, d_state]
assert len(conv_state.shape) == 3
assert len(ssm_state.shape) == 4
assert conv_state.shape[0] == ssm_state.shape[0]
self.register_parameter("conv_state", torch.nn.Parameter(conv_state, requires_grad=False))
self.register_parameter("ssm_state", torch.nn.Parameter(ssm_state, requires_grad=False))
PlamoLayerCache = PlamoAttentionCache | PlamoMambaCache
class PlamoCache(torch.nn.Module):
"""
stores states of the model for fast decoding.
`transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are
deeply dependent on Transformers architecture (e.g., `key_states`) and it is difficult to use
other architectures (e.g., Mamba).
This class provides a similar interface to `transformers.Cache`, but is designed to also handle
the state of Mamba properly.
"""
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.config = config
self.cache = torch.nn.ModuleList([None for _ in range(config.num_hidden_layers)]) # type: ignore
def append_kv(self, key: torch.Tensor, value: torch.Tensor, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]:
c = self.cache[layer_idx]
if c is None:
return key, value
assert isinstance(c, PlamoAttentionCache)
def _validate(cache: torch.Tensor, new_tensor: torch.Tensor) -> None:
assert len(cache.shape) == 4
assert len(new_tensor.shape) == 4
assert cache.shape[0] == new_tensor.shape[0]
assert cache.shape[1] == new_tensor.shape[1]
assert cache.shape[3] == new_tensor.shape[3]
_validate(c.key, key)
_validate(c.value, value)
assert key.shape[2] == value.shape[2]
return torch.cat([c.key, key], dim=2), torch.cat([c.value, value], dim=2)
def update_attention(
self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int
) -> PlamoAttentionCache:
full_attn = layer_idx in self.config.full_attention_idx
window_size = self.config.attention_window_size
if self.cache[layer_idx] is None:
if full_attn:
self.cache[layer_idx] = PlamoAttentionCache(key_states, value_states)
else:
self.cache[layer_idx] = PlamoAttentionCache(
key_states[:, :, -window_size:, :], value_states[:, :, -window_size:, :]
)
else:
c = self.cache[layer_idx]
assert isinstance(c, PlamoAttentionCache)
k, v = self.append_kv(key_states, value_states, layer_idx)
if full_attn:
c.key.data = k
c.value.data = v
else:
c.key.data = k[:, :, -window_size:, :]
c.value.data = v[:, :, -window_size:, :]
return self.cache[layer_idx] # type: ignore
def update_mamba(self, conv_state: torch.Tensor, ssm_state: torch.Tensor, layer_idx: int) -> PlamoMambaCache:
if self.cache[layer_idx] is None:
self.cache[layer_idx] = PlamoMambaCache(conv_state, ssm_state)
else:
c = self.cache[layer_idx]
assert isinstance(c, PlamoMambaCache)
assert c.conv_state.shape == conv_state.shape
assert c.ssm_state.shape == ssm_state.shape
c.conv_state.data = conv_state
c.ssm_state.data = ssm_state
return self.cache[layer_idx] # type: ignore
def __getitem__(self, layer_idx: int) -> PlamoLayerCache | None:
assert layer_idx < len(self.cache)
layer_cache = self.cache[layer_idx]
return layer_cache # type: ignore
def __len__(self) -> int:
return len(self.cache)
def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
if layer_idx is not None:
c = self.cache[layer_idx]
assert isinstance(c, PlamoAttentionCache)
return c.key.shape[2] # type: ignore
sequence_length: int | None = None
for layer_cache in self.cache:
if isinstance(layer_cache, PlamoAttentionCache):
sequence_length = (
max(layer_cache.key.shape[2], sequence_length)
if sequence_length is not None
else layer_cache.key.shape[2]
)
assert sequence_length is not None
return sequence_length
def get_max_length(self) -> int | None:
return None
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
# Cache without size limit -> all cache is usable
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
# length, we will need to evict part of the cache (and thus not all cache is usable)
max_length = self.get_max_length()
previous_seq_length = self.get_seq_length(layer_idx)
if max_length is not None and previous_seq_length + new_seq_length > max_length:
return max_length - new_seq_length
return previous_seq_length
def reorder_cache(self, beam_idx: torch.Tensor) -> None:
def _mamba(cache: PlamoMambaCache) -> PlamoMambaCache:
return PlamoMambaCache(
conv_state=cache.conv_state.index_select(0, beam_idx),
ssm_state=cache.ssm_state.index_select(0, beam_idx),
)
def _attention(cache: PlamoAttentionCache) -> PlamoAttentionCache:
return PlamoAttentionCache(
key=cache.key.index_select(0, beam_idx),
value=cache.value.index_select(0, beam_idx),
)
for i in range(len(self.cache)):
if self.cache[i] is None:
continue
layer_cache = self.cache[i]
if isinstance(layer_cache, PlamoMambaCache):
self.cache[i] = _mamba(layer_cache)
else:
assert isinstance(layer_cache, PlamoAttentionCache)
self.cache[i] = _attention(layer_cache)
@property
def seen_tokens(self) -> int | None:
return None
class DecoderInput(NamedTuple):
hidden_states: torch.Tensor
attention_mask: Optional[torch.Tensor] = None
past_states: Optional[PlamoCache] = None
output_hidden_states: Optional[bool] = False
output_attentions: Optional[bool] = False
gradient_checkpointing: bool = False
input_ids: Optional[torch.Tensor] = None
class DecoderOutput(NamedTuple):
hidden_states: torch.Tensor
all_hidden_states: Optional[Tuple[torch.Tensor, ...]]
all_self_attns: Optional[Tuple[torch.Tensor, ...]]
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
def _make_causal_mask(
input_ids_shape: Tuple[int, int], dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
) -> torch.Tensor:
"""
Make causal mask used for bi-directional self-attention.
"""
bsz, tgt_len = input_ids_shape
mask = torch.full((tgt_len, tgt_len), float("-inf"), device=device)
mask_cond = torch.arange(mask.size(-1), device=device)
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
mask = mask.to(dtype)
if past_key_values_length > 0:
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
# Copied from transformers.models.bart.modeling_bart._expand_mask
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None) -> torch.Tensor:
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), float("-inf")) # type: ignore
def _rms_norm(
hidden_states: torch.Tensor, weight: Optional[torch.Tensor], eps: float, offset: float = 1.0
) -> torch.Tensor:
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + eps)
hidden_states = hidden_states.to(input_dtype)
if weight is not None:
hidden_states = (offset + weight) * hidden_states
return hidden_states
class RMSNorm(nn.Module):
def __init__(
self,
hidden_size: int,
eps: float = 1e-6,
offset: float = 1.0,
device: Optional[Union[torch.device, str]] = None,
) -> None:
super().__init__()
self.weight = nn.Parameter(torch.zeros(hidden_size, device=device))
self.variance_epsilon = eps
self.offset = offset
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return _rms_norm(hidden_states, self.weight, self.variance_epsilon, offset=self.offset)
def get_initial_dt_bias(num_heads: int) -> torch.Tensor:
dt_min = 0.001
dt_max = 0.1
dt = torch.exp(torch.rand(num_heads) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min))
dt = torch.clamp(dt, 1e-4)
inv_dt = dt + torch.log(-torch.expm1(-dt))
return inv_dt
def get_initial_A(num_heads: int) -> torch.Tensor:
A = torch.arange(1, num_heads + 1, dtype=torch.float32)
return torch.log(A)
def _bf16_supported_in_triton() -> bool:
# newer torch (2.2.0 and later?) supports bfloat16 even when using Voltas
# but triton cannot compile bf16 kernels for Volta
major, _ = torch.cuda.get_device_capability()
return major >= 8
def _get_trition_dtype(dtype: torch.dtype) -> torch.dtype:
if dtype != torch.bfloat16:
return dtype
if _bf16_supported_in_triton():
return dtype
return torch.float32
def ssd_update_state(
ssm_state: torch.Tensor,
x: torch.Tensor,
dt: torch.Tensor,
A: torch.Tensor,
B: torch.Tensor,
C: torch.Tensor,
D: torch.Tensor,
z: torch.Tensor,
dt_bias: torch.Tensor,
dt_softplus: bool,
) -> torch.Tensor:
assert ssm_state.dtype == torch.float32
if dt.is_cuda:
dtype = _get_trition_dtype(x.dtype)
else:
dtype = x.dtype
if dt.is_cuda:
f = mamba_ssm.ops.triton.selective_state_update.selective_state_update
else:
f = mamba_ssm.ops.triton.selective_state_update.selective_state_update_ref
hidden_size_per_head = x.shape[-1]
d_state = B.shape[-1]
A = A[:, None, None].expand(-1, hidden_size_per_head, d_state).float()
dt = dt[..., None].expand(-1, -1, hidden_size_per_head)
dt_bias = dt_bias[:, None].expand(-1, hidden_size_per_head)
D = D[:, None].expand(-1, hidden_size_per_head)
assert ssm_state.dtype == torch.float32
out = f(
ssm_state,
x.to(dtype),
dt.to(dtype),
A.float(),
B.to(dtype),
C.to(dtype),
D.float(),
z.to(dtype),
dt_bias.float(),
dt_softplus=dt_softplus,
)
return out[:, None] # type: ignore
def _ssd_chunk_scan_combined_naive(
x: torch.Tensor,
dt: torch.Tensor,
A: torch.Tensor,
B: torch.Tensor,
C: torch.Tensor,
D: torch.Tensor,
z: torch.Tensor,
dt_bias: torch.Tensor,
dt_softplus: bool,
seq_idx: torch.Tensor | None,
ssm_state: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
assert ssm_state.dtype == torch.float32
length = x.shape[1]
ys = []
for i in range(length):
if i != 0 and seq_idx is not None:
ssm_state = torch.where(
(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None, None],
torch.zeros_like(ssm_state),
ssm_state,
)
y = ssd_update_state(
ssm_state,
x[:, i],
dt[:, i],
A,
B[:, i],
C[:, i],
D,
z=z[:, i],
dt_bias=dt_bias,
dt_softplus=dt_softplus,
)
ys.append(y)
return torch.cat(ys, dim=1), ssm_state
def _ssd_chunk_scan_combined_cpu(
x: torch.Tensor,
dt: torch.Tensor,
A: torch.Tensor,
B: torch.Tensor,
C: torch.Tensor,
chunk_size: int,
D: torch.Tensor,
z: torch.Tensor,
dt_bias: torch.Tensor,
dt_softplus: bool,
) -> tuple[torch.Tensor, torch.Tensor]:
# (bsize, nhead, nchunk, chunk_size)
dt = dt.float() # We want high precision for this before cumsum
dt = dt.permute(0, 2, 1).unflatten(2, (-1, chunk_size)) # type: ignore
if dt_bias is not None:
dt = dt + dt_bias[None, :, None, None]
if dt_softplus:
dt = F.softplus(dt)
dA = dt * A[None, :, None, None]
dA_cumsum = torch.cumsum(dA, dim=-1)
_, _, nheads, _ = x.shape
dstate = B.shape[-1]
_ = dt.shape[2]
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_chunk_state"):
# Following is equivalent to `mamba_ssm.ops.triton.ssd_combined.chunk_state_ref(B, x, dt, dA_cumsum)`
# But `einsum` in the above function is too slow in CPU.
x_ = torch.unflatten(x, 1, (-1, chunk_size))
assert B.shape[2] == nheads # B should be already expanded
B_ = torch.unflatten(B, 1, (-1, chunk_size)).to(x.dtype) # (bsize, nchunk, chunk_size, nheads, dstate)
decay_states = torch.exp((dA_cumsum[:, :, :, -1:] - dA_cumsum)).to(x.dtype)
dt_ = dt.to(x.dtype)
# einsum("bclhn,bhcl,bhcl,bclhp->bchpn", B_, decay_states, dt_, x_)
B_ = B_.permute(0, 1, 3, 4, 2) # bchnl
tmp = dt_ * decay_states # bhcl
tmp = tmp.permute(0, 2, 1, 3)[:, :, :, None] # bch1l
tmp = B_ * tmp # bchnl
x_ = x_.permute(0, 1, 3, 2, 4) # bchlp
tmp = tmp @ x_ # bchnp
states = tmp.permute(0, 1, 2, 4, 3) # bchpn
states_dtype = states.dtype
if states.dtype not in [torch.float32, torch.float64]:
states = states.to(torch.float32)
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_state_passing"):
out, last_state = mamba_ssm.ops.triton.ssd_combined.state_passing_ref(
states.flatten(start_dim=-2, end_dim=-1),
dA_cumsum[:, :, :, -1],
)
states = torch.unflatten(out, -1, (-1, dstate))
last_state = torch.unflatten(last_state, -1, (-1, dstate))
states = states.to(states_dtype)
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_chunk_scan"):
out = mamba_ssm.ops.triton.ssd_combined.chunk_scan_ref(B, C, x, dt, dA_cumsum, states, D=D, z=z)
return out, last_state
@torch.profiler.record_function("ssd_chunk_scan_combined")
def ssd_chunk_scan_combined(
x: torch.Tensor,
dt: torch.Tensor,
A: torch.Tensor,
B: torch.Tensor,
C: torch.Tensor,
chunk_size: int,
D: torch.Tensor,
z: torch.Tensor,
dt_bias: torch.Tensor,
dt_softplus: bool,
return_final_states: bool,
seq_idx: torch.Tensor | None,
ssm_state: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor] | torch.Tensor:
if seq_idx is not None:
assert seq_idx.dtype == torch.int32
assert ssm_state is None
assert not return_final_states
if ssm_state is not None:
assert ssm_state.dtype == torch.float32
assert seq_idx is None
length = x.shape[1]
"""
state will be updates by following:
```
dt = softplus(dt)
dA = exp(dt * A)
state_next = state * dA + dB * x
```
To avoid updating state, we set dt to -inf and x to 0
because `softplus(-inf) = 0` and `exp(0) = 1`
"""
pad = (chunk_size - length % chunk_size) % chunk_size
x = torch.nn.functional.pad(x, pad=[0, 0, 0, 0, pad, 0], value=0.0)
dt = torch.nn.functional.pad(dt, pad=[0, 0, pad, 0], value=float("-inf"))
B = torch.nn.functional.pad(B, pad=[0, 0, 0, 0, pad, 0], value=0.0)
C = torch.nn.functional.pad(C, pad=[0, 0, 0, 0, pad, 0], value=0.0)
z = torch.nn.functional.pad(z, pad=[0, 0, 0, 0, pad, 0], value=0.0)
if seq_idx is not None:
seq_idx = torch.nn.functional.pad(seq_idx, pad=[pad, 0], value=0)
length = x.shape[1]
assert length % chunk_size == 0, (length, chunk_size)
if dt.is_cuda:
dtype = _get_trition_dtype(x.dtype)
out = mamba_ssm.ops.triton.ssd_combined.mamba_chunk_scan_combined( # type: ignore
x.to(dtype),
dt.to(dtype),
A.float(),
B.to(dtype),
C.to(dtype),
chunk_size,
D=D.float(),
z=z.to(dtype),
initial_states=ssm_state,
dt_bias=dt_bias.float(),
dt_softplus=dt_softplus,
seq_idx=seq_idx,
return_final_states=return_final_states,
)
if return_final_states:
return out[0][:, pad:], out[1]
else:
assert isinstance(out, torch.Tensor)
return out[:, pad:]
else:
if ssm_state is None and seq_idx is None:
tmp = _ssd_chunk_scan_combined_cpu(
x,
dt,
A,
B,
C,
chunk_size,
D=D,
z=z,
dt_bias=dt_bias.float(),
dt_softplus=dt_softplus,
)
else:
if ssm_state is None:
bsize, _, num_heads, channel = x.shape
state = B.shape[-1]
ssm_state = torch.zeros(bsize, num_heads, channel, state, dtype=torch.float32, device=x.device)
tmp = _ssd_chunk_scan_combined_naive(
x, dt, A, B, C, D, z=z, dt_bias=dt_bias, dt_softplus=dt_softplus, seq_idx=seq_idx, ssm_state=ssm_state
)
tmp = (tmp[0][:, pad:], tmp[1])
if return_final_states:
return tmp
else:
return tmp[0]
def _causal_conv1d_update(
conv_state: torch.Tensor, weight: torch.Tensor, xBC: torch.Tensor
) -> tuple[torch.Tensor, torch.Tensor]:
dtype = conv_state.dtype
xBC = xBC.to(dtype)
weight = weight.to(dtype)
if conv_state.is_cuda:
x = causal_conv1d.causal_conv1d_update(
x=xBC,
conv_state=conv_state,
weight=weight[:, 0, :],
activation="silu",
)
return x, conv_state
else:
x = causal_conv1d.causal_conv1d_update_ref(
x=xBC,
conv_state=conv_state,
weight=weight[:, 0, :],
activation="silu",
)
return x, conv_state
def _causal_conv1d_naive(
conv_state: torch.Tensor, weight: torch.Tensor, x: torch.Tensor, seq_idx: torch.Tensor | None
) -> tuple[torch.Tensor, torch.Tensor]:
length = x.shape[-1]
out = torch.zeros_like(x)
for i in range(length):
if i != 0 and seq_idx is not None:
conv_state = torch.where(
(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None],
torch.zeros_like(conv_state),
conv_state,
)
out[:, :, i : i + 1], conv_state = _causal_conv1d_update(conv_state, weight, x[:, :, i : i + 1])
return out, conv_state
@torch.profiler.record_function("causal_conv1d")
def _causal_conv1d(
conv_state: torch.Tensor | None, weight: torch.Tensor, x: torch.Tensor, seq_idx: torch.Tensor | None
) -> tuple[torch.Tensor, torch.Tensor | None]:
dtype = x.dtype
if conv_state is not None:
dtype = conv_state.dtype
assert seq_idx is None
if seq_idx is not None:
assert seq_idx.dtype == torch.int32
assert conv_state is None
weight = weight.to(dtype)
x = x.to(dtype)
return_final_states = conv_state is not None
if weight.is_cuda:
if x.stride(1) != 1:
# to channel-last format
x = x.transpose(-1, -2).contiguous().transpose(-1, -2)
if conv_state is not None:
if conv_state.stride(1) != 1:
# to channel-last format
conv_state = conv_state.transpose(-1, -2).contiguous().transpose(-1, -2)
tmp = causal_conv1d.causal_conv1d_fn(
x=x,
weight=weight[:, 0, :],
initial_states=conv_state,
return_final_states=conv_state is not None,
activation="silu",
seq_idx=seq_idx,
)
if conv_state is not None:
x, conv_state = tmp
else:
x = tmp
else:
if seq_idx is None:
x, conv_state = causal_conv1d.causal_conv1d_ref(
x=x,
initial_states=conv_state,
return_final_states=True,
weight=weight[:, 0, :],
activation="silu",
)
else:
if conv_state is None:
bsize = x.shape[0]
dim = weight.shape[0]
d_conv = weight.shape[-1]
conv_state = torch.zeros(bsize, dim, d_conv - 1, dtype=x.dtype, device=x.device)
x, conv_state = _causal_conv1d_naive(conv_state, weight, x, seq_idx)
if return_final_states:
return x, conv_state
else:
return x, None
class Mamba(torch.nn.Module):
def __init__(self, config: PlamoConfig, layer_idx: int) -> None:
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.d_state = config.mamba_d_state
self.d_conv = config.mamba_d_conv
self.chunk_size = config.mamba_chunk_size
self.num_heads = config.mamba_num_heads
# TODO add mamba_hidden_size_per_head config (?)
self.hidden_size_per_head = config.hidden_size_per_head
self.intermediate_size = self.num_heads * self.hidden_size_per_head
self.in_proj = torch.nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=False)
self.conv1d = torch.nn.Conv1d(
in_channels=self.intermediate_size,
out_channels=self.intermediate_size,
bias=False, # TODO the original implementation uses bias
kernel_size=self.d_conv,
groups=self.intermediate_size,
padding=0,
)
self.dt_dim = max(64, self.hidden_size // 16)
# Notes:
# Mamba2 removes this linear projection for simplicity (Figure 6 in the paper),
# but it may degrade the ability of content-length extrapolation.
self.bcdt_proj = torch.nn.Linear(
self.intermediate_size,
self.dt_dim + 2 * self.d_state,
bias=False,
)
self.dt_proj = torch.nn.Linear(self.dt_dim, self.num_heads, bias=False)
self.dt_bias = torch.nn.Parameter(get_initial_dt_bias(self.num_heads))
self.A_log = torch.nn.Parameter(get_initial_A(self.num_heads))
self.D = torch.nn.Parameter(torch.ones(self.num_heads))
# TODO norm weight before gating like Mamba2
self.dt_norm_weight = torch.nn.Parameter(torch.ones(self.dt_dim))
self.B_norm_weight = torch.nn.Parameter(torch.ones(self.d_state))
self.C_norm_weight = torch.nn.Parameter(torch.ones(self.d_state))
self.out_proj = torch.nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
def _no_weight_decay_param_names(self) -> set[str]:
return set(["D", "dt_bias", "A_log"])
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_states: Optional[PlamoCache] = None,
) -> Tuple[torch.Tensor, Optional[PlamoCache]]:
bsize, length, _ = hidden_states.shape
is_update = length == 1 and past_states is not None
bool_mask: torch.Tensor | None = None
seq_idx: torch.Tensor | None = None
if attention_mask is not None:
if len(attention_mask.shape) == 2:
attention_mask = attention_mask[None, None].expand(bsize, 1, -1, -1)
assert len(attention_mask.shape) == 4
if past_states is None:
# TODO: support seq_idx with cache
bool_mask_4d = attention_mask == 0
is_first_token = _is_first_token(bool_mask_4d)[:, 0, :]
seq_idx = torch.cumsum(is_first_token, dim=-1) - 1
seq_idx = seq_idx.to(torch.int32)
# `generate` function creates attention mask that contains past tokens,
# but mamba does not use them
attention_mask = attention_mask[:, 0, -length:, -length:]
bool_mask = torch.diagonal(attention_mask, dim1=-2, dim2=-1) == 0
conv_state: torch.Tensor | None
ssm_state: torch.Tensor | None
if past_states is None:
conv_state = None
ssm_state = None
elif past_states[self.layer_idx] is None:
conv_state = torch.zeros(
bsize, self.intermediate_size, self.d_conv - 1, dtype=hidden_states.dtype, device=hidden_states.device
)
ssm_state = torch.zeros(
bsize,
self.num_heads,
self.hidden_size_per_head,
self.d_state,
dtype=torch.float32,
device=hidden_states.device,
)
else:
c = past_states[self.layer_idx]
assert isinstance(c, PlamoMambaCache)
conv_state = c.conv_state
ssm_state = c.ssm_state
zx = self.in_proj(hidden_states)
zx = zx.reshape(bsize, length, self.num_heads, -1)
# z: (bsize, length, num_heads, hidden_size_per_head)
# x: (bsize, length, num_heads, hidden_size_per_head)
z, x = torch.split(zx, [self.hidden_size_per_head, self.hidden_size_per_head], dim=-1)
# conv
x = x.reshape(bsize, length, -1).transpose(1, 2) # (bsize, intermediate_size, length)
if bool_mask is not None:
x = torch.where(bool_mask[:, None, :], x, 0.0)
if is_update:
assert conv_state is not None
x, conv_state = _causal_conv1d_update(conv_state, self.conv1d.weight, x)
else:
x, conv_state = _causal_conv1d(conv_state, self.conv1d.weight, x, seq_idx=seq_idx)
x = x.to(dtype=hidden_states.dtype)
x = x.transpose(1, 2) # (bsize, length, intermediate_size)
x = x.reshape(bsize, length, -1)
# x: (bsize, length, num_heads, hidden_size_per_head)
# B: (bsize, length, 1, d_state)
# C: (bsize, length, 1, d_state)
# dt: (bsize, length, dt_dim)
BCdt = self.bcdt_proj(x)
x = x.reshape(bsize, length, self.num_heads, -1)
B, C, dt = torch.split(BCdt, [self.d_state, self.d_state, self.dt_dim], dim=-1)
B = B[:, :, None, :]
C = C[:, :, None, :]
A = -torch.exp(self.A_log.float()) # (num_heads,)
dt = _rms_norm(dt, None, self.config.rms_norm_eps) * self.dt_norm_weight[None, None, :]
B = _rms_norm(B, None, self.config.rms_norm_eps) * self.B_norm_weight[None, None, None, :]
C = _rms_norm(C, None, self.config.rms_norm_eps) * self.C_norm_weight[None, None, None, :]
# (bsize, length, num_heads, 1)
dt = self.dt_proj(dt)[..., None]
# TODO it may not be required
B = B.expand(-1, -1, self.num_heads, -1)
C = C.expand(-1, -1, self.num_heads, -1)
if bool_mask is not None:
"""
state will be updates by following:
```
dt = softplus(dt)
dA = exp(dt * A)
state_next = state * dA + dB * x
```
To avoid updating state, we set dt to -inf and x to 0
because `softplus(-inf) = 0` and `exp(0) = 1`
"""
dt = torch.where(bool_mask[:, :, None, None], dt, float("-inf"))
x = torch.where(bool_mask[:, :, None, None], x, 0.0)
# ssm
if is_update:
assert ssm_state is not None
out = ssd_update_state(
ssm_state,
x[:, 0],
dt[:, 0].reshape(bsize, -1),
A,
B[:, 0],
C[:, 0],
D=self.D,
z=z[:, 0],
dt_bias=self.dt_bias,
dt_softplus=True,
)
else:
tmp = ssd_chunk_scan_combined(
x,
dt.reshape(bsize, length, -1),
A,
B,
C,
self.chunk_size,
D=self.D,
z=z,
dt_bias=self.dt_bias,
dt_softplus=True,
return_final_states=past_states is not None,
seq_idx=seq_idx,
ssm_state=ssm_state,
)
if past_states is not None:
out, ssm_state = tmp
else:
assert isinstance(tmp, torch.Tensor)
out = tmp
y = self.out_proj(out.reshape(bsize, length, -1))
if past_states is not None:
assert ssm_state is not None
assert conv_state is not None
past_states.update_mamba(conv_state, ssm_state, self.layer_idx)
return y, past_states
def swa_mask(q_len: int, kv_len: int, device: torch.device, window_size: int) -> torch.Tensor:
max_len = max(q_len, kv_len)
mask = (
torch.ones(max_len, max_len, dtype=torch.bool, device=device)
.triu(diagonal=-window_size)
.tril(diagonal=window_size)
)
return mask[-q_len:, -kv_len:]
class Attention(torch.nn.Module):
def __init__(self, config: PlamoConfig, layer_idx: int) -> None:
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
head_dim = config.hidden_size_per_head
self.max_position_embeddings = config.max_position_embeddings
self.q_num_heads = config.num_attention_heads
self.qk_dim = self.v_dim = head_dim
self.k_num_heads = self.v_num_heads = config.num_key_value_heads
assert self.q_num_heads % self.k_num_heads == 0
self.n_group = self.q_num_heads // self.k_num_heads
self.q_proj_dim = self.q_num_heads * self.qk_dim
self.k_proj_dim = self.k_num_heads * self.qk_dim
self.v_proj_dim = self.k_num_heads * self.v_dim
self.qkv_proj = nn.Linear(self.hidden_size, self.q_proj_dim + self.k_proj_dim + self.v_proj_dim, bias=False)
self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False)
self.q_weight = torch.nn.Parameter(torch.ones((self.q_num_heads, self.qk_dim)))
self.k_weight = torch.nn.Parameter(torch.ones((self.k_num_heads, self.qk_dim)))
self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.config.attention_window_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_states: Optional[PlamoCache] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PlamoCache]]:
bsz, q_len, _ = hidden_states.size()
qkv = self.qkv_proj(hidden_states)
query_states, key_states, value_states = torch.split(
qkv, [self.q_proj_dim, self.k_proj_dim, self.v_proj_dim], dim=-1
)
query_states = query_states.view(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.v_num_heads, self.v_dim).transpose(1, 2)
attn_dtype = query_states.dtype
query_states = _rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None]
key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None]
if past_states is not None:
# reuse k, v, self_attention
key_states_new = key_states
value_states_new = value_states
key_states, value_states = past_states.append_kv(key_states, value_states, self.layer_idx) # type: ignore
past_states.update_attention(key_states_new, value_states_new, self.layer_idx)
kv_seq_len = key_states.shape[-2]
device = hidden_states.device
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=device)[None]
q_position_ids = position_ids[:, -query_states.shape[2] :]
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states = _rotary_pos_emb(query_states, cos, sin, q_position_ids)
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids)
# [bsz, nh, t, hd]
def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor:
t = torch.repeat_interleave(t, repeat, dim=1)
return t[:, :target]
# expand shared kv
assert self.k_num_heads == self.v_num_heads
key_states = _expand_kv(key_states, self.n_group, self.q_num_heads)
value_states = _expand_kv(value_states, self.n_group, self.q_num_heads)
full_attn = self.layer_idx in self.config.full_attention_idx
query_states = query_states.to(attn_dtype)
key_states = key_states.to(attn_dtype)
value_states = value_states.to(attn_dtype)
if attention_mask is not None and attention_mask.dtype != torch.bool:
attention_mask = attention_mask.to(attn_dtype)
if attention_mask is None:
if not full_attn:
assert key_states.shape[2] <= self.config.attention_window_size + 1
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=True)
else:
if attention_mask.dtype == torch.bool:
attention_mask = torch.where(attention_mask, torch.tensor(0.0, dtype=torch.float), float("-inf"))
if len(attention_mask.shape) == 2:
attention_mask = attention_mask[None, None]
assert len(attention_mask.shape) == 4
if not full_attn:
m_swa = swa_mask(
query_states.shape[2], key_states.shape[2], query_states.device, self.config.attention_window_size
)
# `generate` function creates attention mask that does not consider sliding window
m_swa = m_swa[None, None]
attention_mask = attention_mask[:, :, -query_states.shape[2] :, -key_states.shape[2] :]
attention_mask = torch.where(m_swa, attention_mask, float("-inf"))
# like AttentionMaskConverter._unmask_unattended in huggingface.transfoermers,
# we need to attend to all tokens in masked rows for `scaled_dot_product_attention`
bool_mask = torch.logical_not(torch.isneginf(attention_mask))
valid_tokens = torch.sum(bool_mask, dim=-1).bool() # (..., q_len)
attention_mask = torch.where(valid_tokens[..., None], attention_mask, float(0.0))
attn_output = F.scaled_dot_product_attention(
query_states, key_states, value_states, attn_mask=attention_mask
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_states
class MLP(nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = torch.nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = torch.nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
h = self.gate_up_proj(x)
h = _swiglu(h)
return self.down_proj(h) # type: ignore
class PlamoDecoderLayer(torch.nn.Module):
def __init__(self, config: PlamoConfig, is_mamba: bool, layer_idx: int) -> None:
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.is_mamba = is_mamba
self.mixer: torch.nn.Module
if is_mamba:
self.mixer = Mamba(config, layer_idx)
else:
self.mixer = Attention(config, layer_idx)
self.mlp = MLP(config)
"""
Notes: The model performance was degraded when setting all offsets to 1.
"""
self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0)
self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / 5)
self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0)
self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / (5**1.5))
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_state: Optional[PlamoCache] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[Any, ...]:
# from LlamaDecoder
residual = hidden_states
hidden_states = self.pre_mixer_norm(hidden_states)
# Self Attention
if self.is_mamba:
hidden_states_sa, present_key_value = self.mixer(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_states=past_state,
)
self_attn_weights = None
else:
hidden_states_sa, self_attn_weights, present_key_value = self.mixer(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_states=past_state,
output_attentions=output_attentions,
)
hidden_states_sa = self.post_mixer_norm(hidden_states_sa)
hidden_states = residual + hidden_states_sa
residual = hidden_states
hidden_states = self.pre_mlp_norm(hidden_states)
# Fully Connected
hidden_states_mlp = self.mlp(hidden_states)
# Residual
hidden_states_mlp = self.post_mlp_norm(hidden_states_mlp)
hidden_states = residual + hidden_states_mlp
outputs: Any = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs # type: ignore
def is_mamba(config: PlamoConfig, i: int) -> bool:
if not config.mamba_enabled:
return False
assert config.mamba_step > 1
assert i < config.num_hidden_layers
if config.num_hidden_layers <= (config.mamba_step // 2):
# use attention in last layer
return i != config.num_hidden_layers - 1
return (i % config.mamba_step) != (config.mamba_step // 2)
class PlamoDecoder(torch.nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.layers = torch.nn.ModuleList(
[
PlamoDecoderLayer(config, is_mamba=is_mamba(config, i), layer_idx=i)
for i in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def forward(self, x: DecoderInput) -> DecoderOutput:
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = () if x.output_hidden_states else None
all_self_attns: Optional[Tuple[torch.Tensor, ...]] = () if x.output_attentions else None
hidden_states = x.hidden_states
for decoder_layer in self.layers:
if x.output_hidden_states:
assert all_hidden_states is not None
all_hidden_states += (hidden_states,)
if self.training and x.gradient_checkpointing:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
x.attention_mask,
x.past_states,
x.output_attentions,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=x.attention_mask,
past_state=x.past_states,
output_attentions=x.output_attentions,
)
hidden_states = layer_outputs[0]
if x.output_attentions:
assert layer_outputs[1] is not None
assert all_self_attns is not None
all_self_attns += (layer_outputs[1],)
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns)
class PlamoPreTrainedModel(PreTrainedModel): # type: ignore
config_class = PlamoConfig
_no_split_modules: List[str]
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["PlamoDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module: torch.nn.Module) -> None:
std = 0.02
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class PlamoModel(PlamoPreTrainedModel):
def __init__(self, config: PlamoConfig):
super().__init__(config)
assert config.eval_attention_n_bit is None
assert config.eval_mlp_n_bit is None
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if config.image_feature_size is not None:
if config.image_proj_type == "mlp":
self.image_proj = MLPImageProjector(config) # type: ignore
elif config.image_proj_type == "linear":
self.image_proj = nn.Linear(config.image_feature_size, config.hidden_size, bias=False) # type: ignore
else:
raise ValueError(f"Unknown image_proj_type: {config.image_proj_type}")
self.layers = PlamoDecoder(config) # type: ignore
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> torch.nn.Embedding:
return self.embed_tokens
def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
self.embed_tokens = value
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
def _prepare_decoder_attention_mask(
self,
attention_mask: torch.Tensor,
input_shape: Tuple[int, int],
inputs_embeds: Optional[torch.Tensor],
past_key_values_length: int,
) -> Optional[torch.Tensor]:
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask: Optional[torch.Tensor] = None
if input_shape[-1] > 1:
assert inputs_embeds is not None
combined_attention_mask = _make_causal_mask(
input_shape,
inputs_embeds.dtype,
device=inputs_embeds.device,
past_key_values_length=past_key_values_length,
)
input_shape = (input_shape[0], combined_attention_mask.shape[2])
if attention_mask is not None:
if attention_mask.dim() == 4:
# Custom 4D attention mask
expanded_attn_mask = attention_mask
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
assert inputs_embeds is not None
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
inputs_embeds.device
)
combined_attention_mask = (
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
)
return combined_attention_mask
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[PlamoCache] = None,
inputs_embeds: Optional[torch.Tensor] = None,
image_features: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
assert input_ids is not None
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values.get_seq_length()
seq_length_with_past = seq_length_with_past + past_key_values_length
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if image_features is not None:
assert self.config.image_token_id is not None
image_embeds = self.image_proj(image_features)
assert image_embeds.shape == inputs_embeds.shape, (image_embeds.shape, inputs_embeds.shape)
mask = input_ids == self.config.image_token_id
inputs_embeds[mask] = image_embeds[mask]
# embed positions
require_attn_mask = False
if not self.training or past_key_values is not None:
require_attn_mask = True
if seq_length_with_past >= self.config.attention_window_size:
require_attn_mask = True
if require_attn_mask and attention_mask is None:
attention_mask = torch.ones(
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
)
if attention_mask is not None:
attention_mask = self._prepare_decoder_attention_mask(
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
)
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
use_cache = False
if use_cache and past_key_values is None:
past_key_values = PlamoCache(self.config)
# decoder layers
out = self.layers(
DecoderInput(
hidden_states,
attention_mask,
past_key_values,
output_hidden_states,
output_attentions,
self.gradient_checkpointing,
)
)
assert isinstance(out, DecoderOutput)
hidden_states = out.hidden_states
all_hidden_states = out.all_hidden_states
all_self_attns = out.all_self_attns
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
assert all_hidden_states is not None
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None
)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class PlamoForCausalLM(PlamoPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
# Without this, the model cannot be loaded into a meta device.
# Relevant code:
# https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L4376-L4381
# https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L356
# https://github.com/pytorch/pytorch/blob/v2.4.1/torch/nn/modules/module.py#L2068
_supports_param_buffer_assignment = False
def __init__(self, config: PlamoConfig) -> None:
super().__init__(config)
self.model = PlamoModel(config)
self.vocab_size = config.vocab_size
vocab_size = ((self.vocab_size + 15) // 16) * 16
self.lm_head: torch.nn.Module = nn.Linear(config.hidden_size, vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> torch.nn.Embedding:
return self.model.embed_tokens
def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
self.model.embed_tokens = value
def get_output_embeddings(self) -> torch.nn.Module:
return self.lm_head
def set_output_embeddings(self, new_embeddings: torch.nn.Module) -> None:
self.lm_head = new_embeddings
def set_decoder(self, decoder: PlamoModel) -> None:
self.model = decoder
def get_decoder(self) -> PlamoModel:
return self.model
def forward( # type: ignore
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[PlamoCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
image_features: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
>>> prompt = "Hey, are you consciours? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
```"""
assert input_ids is not None
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
image_features=image_features,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
logits = logits[..., : self.vocab_size]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
past_key_values: Optional[PlamoCache] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
image_features: Optional[torch.Tensor] = None,
**kwargs: Any,
) -> Dict[str, Any]:
if past_key_values:
input_ids = input_ids[:, -1:]
if image_features is not None:
image_features = image_features[:, -1:, :]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs: Dict[str, Any] = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"image_features": image_features,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values: PlamoCache, beam_idx: torch.Tensor) -> PlamoCache:
past_key_values.reorder_cache(beam_idx)
return past_key_values
class MLPImageProjector(nn.Module):
def __init__(self, config: PlamoConfig) -> None:
super().__init__()
self.config = config
assert config.image_feature_size is not None # for typing
# nn.LayerNorm is not supported by PFVM, so use RMSNorm + Bias instead to approximate this.
self.norm0 = RMSNorm(config.image_feature_size, eps=config.rms_norm_eps)
self.bias0 = Bias(config.image_feature_size)
# PFVM doesn't support Linear with bias, so add bias manually afterwards.
self.linear1 = nn.Linear(config.image_feature_size, config.hidden_size, bias=False)
self.bias1 = Bias(config.hidden_size)
self.act1 = nn.GELU()
self.linear2 = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.bias2 = Bias(config.hidden_size)
def forward(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.norm0(hidden_states)
hidden_states = self.bias0(hidden_states)
hidden_states = self.linear1(hidden_states)
hidden_states = self.bias1(hidden_states)
hidden_states = self.act1(hidden_states)
hidden_states = self.linear2(hidden_states)
hidden_states = self.bias2(hidden_states)
return hidden_states
class Bias(nn.Module):
def __init__(self, num_features: int) -> None:
super().__init__()
self._bias = nn.Parameter(torch.zeros((num_features,)))
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
return x + self._bias