|
import enum |
|
import math |
|
import warnings |
|
from typing import Any, Dict, List, Literal, NamedTuple, Optional, Tuple, Union |
|
|
|
try: |
|
|
|
|
|
import mamba_ssm |
|
except ModuleNotFoundError: |
|
warnings.warn("mamba_ssm could not be imported", stacklevel=2) |
|
try: |
|
|
|
|
|
import causal_conv1d.causal_conv1d_interface as causal_conv1d |
|
except ModuleNotFoundError: |
|
warnings.warn("causal_conv1d could not be imported", stacklevel=2) |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
from transformers import PretrainedConfig, PreTrainedModel |
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast |
|
|
|
|
|
def _is_first_token(mask: torch.Tensor) -> torch.Tensor: |
|
assert mask.dtype == torch.bool |
|
B, Nh, q_len, kv_len = mask.shape |
|
mask = mask[:, :, :, -q_len:] |
|
cont = q_len != kv_len |
|
v = False if cont else True |
|
out = torch.logical_not(torch.diagonal(mask, offset=-1, dim1=-2, dim2=-1).bool()) |
|
out = torch.cat( |
|
[ |
|
torch.full(size=(B, Nh, 1), dtype=torch.bool, device=out.device, fill_value=v), |
|
out, |
|
], |
|
dim=-1, |
|
) |
|
return out |
|
|
|
|
|
def _swiglu(h: torch.Tensor) -> torch.Tensor: |
|
h0, h1 = h.chunk(2, dim=-1) |
|
return torch.nn.functional.silu(h0) * h1 |
|
|
|
|
|
class RotaryEmbedding(torch.nn.Module): |
|
def __init__( |
|
self, dim: int, max_position_embeddings: int = 2048, base: int = 10000, device: Optional[torch.device] = None |
|
) -> None: |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None: |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) |
|
|
|
def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
def _rotate_half(x: torch.Tensor) -> torch.Tensor: |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def _rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor: |
|
|
|
cos = cos.squeeze(1).squeeze(0) |
|
sin = sin.squeeze(1).squeeze(0) |
|
cos = cos[position_ids].unsqueeze(1) |
|
sin = sin[position_ids].unsqueeze(1) |
|
x_embed = (x * cos) + (_rotate_half(x) * sin) |
|
return x_embed |
|
|
|
|
|
class LinearType(str, enum.Enum): |
|
Normal = "normal" |
|
Fp8 = "fp8" |
|
Fp8Retain = "fp8-retain" |
|
|
|
|
|
class PlamoConfig(PretrainedConfig): |
|
model_type: str = "plamo" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int = 4096, |
|
num_hidden_layers: int = 32, |
|
rms_norm_eps: float = 1e-6, |
|
tie_word_embeddings: bool = True, |
|
|
|
num_attention_heads: int = 32, |
|
num_key_value_heads: int = 4, |
|
hidden_size_per_head: int = 128, |
|
max_position_embeddings: int = 2048, |
|
attention_window_size: int = 2048, |
|
full_attention_idx: list[int] | None = None, |
|
|
|
mamba_d_state: int = 64, |
|
mamba_d_conv: int = 4, |
|
mamba_num_heads: int = 64, |
|
mamba_step: int = 2, |
|
mamba_chunk_size: int = 256, |
|
mamba_enabled: bool = True, |
|
|
|
intermediate_size: int = 13312, |
|
|
|
vocab_size: int = 32000, |
|
tokenizer_class: str = "PlamoTokenizer", |
|
pad_token_id: Optional[int] = None, |
|
bos_token_id: int = 1, |
|
eos_token_id: int = 2, |
|
|
|
image_token_id: Optional[int] = None, |
|
image_feature_size: Optional[int] = None, |
|
image_proj_type: Literal["linear", "mlp"] = "linear", |
|
|
|
linear_type: LinearType = LinearType.Normal, |
|
fp8_accum_dtype: Optional[str] = None, |
|
|
|
eval_attention_n_bit: Optional[int] = None, |
|
eval_mlp_n_bit: Optional[int] = None, |
|
use_cache: bool = True, |
|
**kwargs: Any, |
|
) -> None: |
|
|
|
|
|
self.max_position_embeddings = max(10 * 1024 * 1024, max_position_embeddings) |
|
self.hidden_size = hidden_size |
|
self.rms_norm_eps = rms_norm_eps |
|
|
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.hidden_size_per_head = hidden_size_per_head |
|
self.num_key_value_heads = num_key_value_heads |
|
self.attention_window_size = attention_window_size |
|
self.full_attention_idx = full_attention_idx if full_attention_idx is not None else [] |
|
|
|
self.mamba_d_state = mamba_d_state |
|
self.mamba_d_conv = mamba_d_conv |
|
self.mamba_num_heads = mamba_num_heads |
|
self.mamba_step = mamba_step |
|
self.mamba_chunk_size = mamba_chunk_size |
|
self.mamba_enabled = mamba_enabled |
|
|
|
self.intermediate_size = intermediate_size |
|
|
|
self.vocab_size = vocab_size |
|
|
|
self.image_token_id = image_token_id |
|
self.image_feature_size = image_feature_size |
|
self.image_proj_type = image_proj_type |
|
|
|
self.linear_type = linear_type |
|
self.fp8_accum_dtype = fp8_accum_dtype |
|
|
|
self.eval_attention_n_bit = eval_attention_n_bit |
|
self.eval_mlp_n_bit = eval_mlp_n_bit |
|
self.use_cache = use_cache |
|
|
|
|
|
self.sliding_window = attention_window_size |
|
|
|
super().__init__( |
|
tokenizer_class=tokenizer_class, |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
class PlamoAttentionCache(torch.nn.Module): |
|
def __init__(self, key: torch.Tensor, value: torch.Tensor) -> None: |
|
super().__init__() |
|
B, nh, L, c = key.shape |
|
assert len(value.shape) == 4 |
|
assert value.shape[0] == B |
|
assert value.shape[2] == L |
|
self.register_parameter("key", torch.nn.Parameter(key, requires_grad=False)) |
|
self.register_parameter("value", torch.nn.Parameter(value, requires_grad=False)) |
|
|
|
|
|
class PlamoMambaCache(torch.nn.Module): |
|
def __init__(self, conv_state: torch.Tensor, ssm_state: torch.Tensor) -> None: |
|
super().__init__() |
|
|
|
|
|
assert len(conv_state.shape) == 3 |
|
assert len(ssm_state.shape) == 4 |
|
assert conv_state.shape[0] == ssm_state.shape[0] |
|
self.register_parameter("conv_state", torch.nn.Parameter(conv_state, requires_grad=False)) |
|
self.register_parameter("ssm_state", torch.nn.Parameter(ssm_state, requires_grad=False)) |
|
|
|
|
|
PlamoLayerCache = PlamoAttentionCache | PlamoMambaCache |
|
|
|
|
|
class PlamoCache(torch.nn.Module): |
|
""" |
|
stores states of the model for fast decoding. |
|
`transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are |
|
deeply dependent on Transformers architecture (e.g., `key_states`) and it is difficult to use |
|
other architectures (e.g., Mamba). |
|
This class provides a similar interface to `transformers.Cache`, but is designed to also handle |
|
the state of Mamba properly. |
|
""" |
|
|
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.cache = torch.nn.ModuleList([None for _ in range(config.num_hidden_layers)]) |
|
|
|
def append_kv(self, key: torch.Tensor, value: torch.Tensor, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]: |
|
c = self.cache[layer_idx] |
|
if c is None: |
|
return key, value |
|
assert isinstance(c, PlamoAttentionCache) |
|
|
|
def _validate(cache: torch.Tensor, new_tensor: torch.Tensor) -> None: |
|
assert len(cache.shape) == 4 |
|
assert len(new_tensor.shape) == 4 |
|
assert cache.shape[0] == new_tensor.shape[0] |
|
assert cache.shape[1] == new_tensor.shape[1] |
|
assert cache.shape[3] == new_tensor.shape[3] |
|
|
|
_validate(c.key, key) |
|
_validate(c.value, value) |
|
assert key.shape[2] == value.shape[2] |
|
return torch.cat([c.key, key], dim=2), torch.cat([c.value, value], dim=2) |
|
|
|
def update_attention( |
|
self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int |
|
) -> PlamoAttentionCache: |
|
full_attn = layer_idx in self.config.full_attention_idx |
|
window_size = self.config.attention_window_size |
|
|
|
if self.cache[layer_idx] is None: |
|
if full_attn: |
|
self.cache[layer_idx] = PlamoAttentionCache(key_states, value_states) |
|
else: |
|
self.cache[layer_idx] = PlamoAttentionCache( |
|
key_states[:, :, -window_size:, :], value_states[:, :, -window_size:, :] |
|
) |
|
else: |
|
c = self.cache[layer_idx] |
|
assert isinstance(c, PlamoAttentionCache) |
|
k, v = self.append_kv(key_states, value_states, layer_idx) |
|
if full_attn: |
|
c.key.data = k |
|
c.value.data = v |
|
else: |
|
c.key.data = k[:, :, -window_size:, :] |
|
c.value.data = v[:, :, -window_size:, :] |
|
return self.cache[layer_idx] |
|
|
|
def update_mamba(self, conv_state: torch.Tensor, ssm_state: torch.Tensor, layer_idx: int) -> PlamoMambaCache: |
|
if self.cache[layer_idx] is None: |
|
self.cache[layer_idx] = PlamoMambaCache(conv_state, ssm_state) |
|
else: |
|
c = self.cache[layer_idx] |
|
assert isinstance(c, PlamoMambaCache) |
|
assert c.conv_state.shape == conv_state.shape |
|
assert c.ssm_state.shape == ssm_state.shape |
|
c.conv_state.data = conv_state |
|
c.ssm_state.data = ssm_state |
|
return self.cache[layer_idx] |
|
|
|
def __getitem__(self, layer_idx: int) -> PlamoLayerCache | None: |
|
assert layer_idx < len(self.cache) |
|
layer_cache = self.cache[layer_idx] |
|
return layer_cache |
|
|
|
def __len__(self) -> int: |
|
return len(self.cache) |
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = None) -> int: |
|
if layer_idx is not None: |
|
c = self.cache[layer_idx] |
|
assert isinstance(c, PlamoAttentionCache) |
|
return c.key.shape[2] |
|
|
|
sequence_length: int | None = None |
|
for layer_cache in self.cache: |
|
if isinstance(layer_cache, PlamoAttentionCache): |
|
sequence_length = ( |
|
max(layer_cache.key.shape[2], sequence_length) |
|
if sequence_length is not None |
|
else layer_cache.key.shape[2] |
|
) |
|
assert sequence_length is not None |
|
return sequence_length |
|
|
|
def get_max_length(self) -> int | None: |
|
return None |
|
|
|
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int: |
|
"""Given the sequence length of the new inputs, returns the usable length of the cache.""" |
|
|
|
|
|
|
|
max_length = self.get_max_length() |
|
previous_seq_length = self.get_seq_length(layer_idx) |
|
if max_length is not None and previous_seq_length + new_seq_length > max_length: |
|
return max_length - new_seq_length |
|
return previous_seq_length |
|
|
|
def reorder_cache(self, beam_idx: torch.Tensor) -> None: |
|
def _mamba(cache: PlamoMambaCache) -> PlamoMambaCache: |
|
return PlamoMambaCache( |
|
conv_state=cache.conv_state.index_select(0, beam_idx), |
|
ssm_state=cache.ssm_state.index_select(0, beam_idx), |
|
) |
|
|
|
def _attention(cache: PlamoAttentionCache) -> PlamoAttentionCache: |
|
return PlamoAttentionCache( |
|
key=cache.key.index_select(0, beam_idx), |
|
value=cache.value.index_select(0, beam_idx), |
|
) |
|
|
|
for i in range(len(self.cache)): |
|
if self.cache[i] is None: |
|
continue |
|
layer_cache = self.cache[i] |
|
if isinstance(layer_cache, PlamoMambaCache): |
|
self.cache[i] = _mamba(layer_cache) |
|
else: |
|
assert isinstance(layer_cache, PlamoAttentionCache) |
|
self.cache[i] = _attention(layer_cache) |
|
|
|
@property |
|
def seen_tokens(self) -> int | None: |
|
return None |
|
|
|
|
|
class DecoderInput(NamedTuple): |
|
hidden_states: torch.Tensor |
|
attention_mask: Optional[torch.Tensor] = None |
|
past_states: Optional[PlamoCache] = None |
|
output_hidden_states: Optional[bool] = False |
|
output_attentions: Optional[bool] = False |
|
gradient_checkpointing: bool = False |
|
input_ids: Optional[torch.Tensor] = None |
|
|
|
|
|
class DecoderOutput(NamedTuple): |
|
hidden_states: torch.Tensor |
|
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] |
|
all_self_attns: Optional[Tuple[torch.Tensor, ...]] |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: Tuple[int, int], dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 |
|
) -> torch.Tensor: |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), float("-inf"), device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) |
|
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None) -> torch.Tensor: |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), float("-inf")) |
|
|
|
|
|
def _rms_norm( |
|
hidden_states: torch.Tensor, weight: Optional[torch.Tensor], eps: float, offset: float = 1.0 |
|
) -> torch.Tensor: |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + eps) |
|
hidden_states = hidden_states.to(input_dtype) |
|
if weight is not None: |
|
hidden_states = (offset + weight) * hidden_states |
|
return hidden_states |
|
|
|
|
|
class RMSNorm(nn.Module): |
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
eps: float = 1e-6, |
|
offset: float = 1.0, |
|
device: Optional[Union[torch.device, str]] = None, |
|
) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.zeros(hidden_size, device=device)) |
|
self.variance_epsilon = eps |
|
self.offset = offset |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
return _rms_norm(hidden_states, self.weight, self.variance_epsilon, offset=self.offset) |
|
|
|
|
|
def get_initial_dt_bias(num_heads: int) -> torch.Tensor: |
|
dt_min = 0.001 |
|
dt_max = 0.1 |
|
dt = torch.exp(torch.rand(num_heads) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min)) |
|
dt = torch.clamp(dt, 1e-4) |
|
inv_dt = dt + torch.log(-torch.expm1(-dt)) |
|
return inv_dt |
|
|
|
|
|
def get_initial_A(num_heads: int) -> torch.Tensor: |
|
A = torch.arange(1, num_heads + 1, dtype=torch.float32) |
|
return torch.log(A) |
|
|
|
|
|
def _bf16_supported_in_triton() -> bool: |
|
|
|
|
|
major, _ = torch.cuda.get_device_capability() |
|
return major >= 8 |
|
|
|
|
|
def _get_trition_dtype(dtype: torch.dtype) -> torch.dtype: |
|
if dtype != torch.bfloat16: |
|
return dtype |
|
if _bf16_supported_in_triton(): |
|
return dtype |
|
return torch.float32 |
|
|
|
|
|
def ssd_update_state( |
|
ssm_state: torch.Tensor, |
|
x: torch.Tensor, |
|
dt: torch.Tensor, |
|
A: torch.Tensor, |
|
B: torch.Tensor, |
|
C: torch.Tensor, |
|
D: torch.Tensor, |
|
z: torch.Tensor, |
|
dt_bias: torch.Tensor, |
|
dt_softplus: bool, |
|
) -> torch.Tensor: |
|
assert ssm_state.dtype == torch.float32 |
|
if dt.is_cuda: |
|
dtype = _get_trition_dtype(x.dtype) |
|
else: |
|
dtype = x.dtype |
|
if dt.is_cuda: |
|
f = mamba_ssm.ops.triton.selective_state_update.selective_state_update |
|
else: |
|
f = mamba_ssm.ops.triton.selective_state_update.selective_state_update_ref |
|
|
|
hidden_size_per_head = x.shape[-1] |
|
d_state = B.shape[-1] |
|
A = A[:, None, None].expand(-1, hidden_size_per_head, d_state).float() |
|
dt = dt[..., None].expand(-1, -1, hidden_size_per_head) |
|
dt_bias = dt_bias[:, None].expand(-1, hidden_size_per_head) |
|
D = D[:, None].expand(-1, hidden_size_per_head) |
|
assert ssm_state.dtype == torch.float32 |
|
out = f( |
|
ssm_state, |
|
x.to(dtype), |
|
dt.to(dtype), |
|
A.float(), |
|
B.to(dtype), |
|
C.to(dtype), |
|
D.float(), |
|
z.to(dtype), |
|
dt_bias.float(), |
|
dt_softplus=dt_softplus, |
|
) |
|
return out[:, None] |
|
|
|
|
|
def _ssd_chunk_scan_combined_naive( |
|
x: torch.Tensor, |
|
dt: torch.Tensor, |
|
A: torch.Tensor, |
|
B: torch.Tensor, |
|
C: torch.Tensor, |
|
D: torch.Tensor, |
|
z: torch.Tensor, |
|
dt_bias: torch.Tensor, |
|
dt_softplus: bool, |
|
seq_idx: torch.Tensor | None, |
|
ssm_state: torch.Tensor, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
assert ssm_state.dtype == torch.float32 |
|
length = x.shape[1] |
|
ys = [] |
|
for i in range(length): |
|
if i != 0 and seq_idx is not None: |
|
ssm_state = torch.where( |
|
(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None, None], |
|
torch.zeros_like(ssm_state), |
|
ssm_state, |
|
) |
|
y = ssd_update_state( |
|
ssm_state, |
|
x[:, i], |
|
dt[:, i], |
|
A, |
|
B[:, i], |
|
C[:, i], |
|
D, |
|
z=z[:, i], |
|
dt_bias=dt_bias, |
|
dt_softplus=dt_softplus, |
|
) |
|
ys.append(y) |
|
return torch.cat(ys, dim=1), ssm_state |
|
|
|
|
|
def _ssd_chunk_scan_combined_cpu( |
|
x: torch.Tensor, |
|
dt: torch.Tensor, |
|
A: torch.Tensor, |
|
B: torch.Tensor, |
|
C: torch.Tensor, |
|
chunk_size: int, |
|
D: torch.Tensor, |
|
z: torch.Tensor, |
|
dt_bias: torch.Tensor, |
|
dt_softplus: bool, |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
|
|
dt = dt.float() |
|
dt = dt.permute(0, 2, 1).unflatten(2, (-1, chunk_size)) |
|
if dt_bias is not None: |
|
dt = dt + dt_bias[None, :, None, None] |
|
if dt_softplus: |
|
dt = F.softplus(dt) |
|
dA = dt * A[None, :, None, None] |
|
dA_cumsum = torch.cumsum(dA, dim=-1) |
|
|
|
_, _, nheads, _ = x.shape |
|
dstate = B.shape[-1] |
|
_ = dt.shape[2] |
|
|
|
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_chunk_state"): |
|
|
|
|
|
x_ = torch.unflatten(x, 1, (-1, chunk_size)) |
|
assert B.shape[2] == nheads |
|
B_ = torch.unflatten(B, 1, (-1, chunk_size)).to(x.dtype) |
|
decay_states = torch.exp((dA_cumsum[:, :, :, -1:] - dA_cumsum)).to(x.dtype) |
|
dt_ = dt.to(x.dtype) |
|
|
|
|
|
B_ = B_.permute(0, 1, 3, 4, 2) |
|
tmp = dt_ * decay_states |
|
tmp = tmp.permute(0, 2, 1, 3)[:, :, :, None] |
|
tmp = B_ * tmp |
|
x_ = x_.permute(0, 1, 3, 2, 4) |
|
tmp = tmp @ x_ |
|
states = tmp.permute(0, 1, 2, 4, 3) |
|
|
|
states_dtype = states.dtype |
|
if states.dtype not in [torch.float32, torch.float64]: |
|
states = states.to(torch.float32) |
|
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_state_passing"): |
|
out, last_state = mamba_ssm.ops.triton.ssd_combined.state_passing_ref( |
|
states.flatten(start_dim=-2, end_dim=-1), |
|
dA_cumsum[:, :, :, -1], |
|
) |
|
states = torch.unflatten(out, -1, (-1, dstate)) |
|
last_state = torch.unflatten(last_state, -1, (-1, dstate)) |
|
states = states.to(states_dtype) |
|
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_chunk_scan"): |
|
out = mamba_ssm.ops.triton.ssd_combined.chunk_scan_ref(B, C, x, dt, dA_cumsum, states, D=D, z=z) |
|
|
|
return out, last_state |
|
|
|
|
|
@torch.profiler.record_function("ssd_chunk_scan_combined") |
|
def ssd_chunk_scan_combined( |
|
x: torch.Tensor, |
|
dt: torch.Tensor, |
|
A: torch.Tensor, |
|
B: torch.Tensor, |
|
C: torch.Tensor, |
|
chunk_size: int, |
|
D: torch.Tensor, |
|
z: torch.Tensor, |
|
dt_bias: torch.Tensor, |
|
dt_softplus: bool, |
|
return_final_states: bool, |
|
seq_idx: torch.Tensor | None, |
|
ssm_state: torch.Tensor | None, |
|
) -> tuple[torch.Tensor, torch.Tensor] | torch.Tensor: |
|
if seq_idx is not None: |
|
assert seq_idx.dtype == torch.int32 |
|
assert ssm_state is None |
|
assert not return_final_states |
|
if ssm_state is not None: |
|
assert ssm_state.dtype == torch.float32 |
|
assert seq_idx is None |
|
|
|
length = x.shape[1] |
|
|
|
""" |
|
state will be updates by following: |
|
``` |
|
dt = softplus(dt) |
|
dA = exp(dt * A) |
|
state_next = state * dA + dB * x |
|
``` |
|
|
|
To avoid updating state, we set dt to -inf and x to 0 |
|
because `softplus(-inf) = 0` and `exp(0) = 1` |
|
""" |
|
pad = (chunk_size - length % chunk_size) % chunk_size |
|
x = torch.nn.functional.pad(x, pad=[0, 0, 0, 0, pad, 0], value=0.0) |
|
dt = torch.nn.functional.pad(dt, pad=[0, 0, pad, 0], value=float("-inf")) |
|
B = torch.nn.functional.pad(B, pad=[0, 0, 0, 0, pad, 0], value=0.0) |
|
C = torch.nn.functional.pad(C, pad=[0, 0, 0, 0, pad, 0], value=0.0) |
|
z = torch.nn.functional.pad(z, pad=[0, 0, 0, 0, pad, 0], value=0.0) |
|
if seq_idx is not None: |
|
seq_idx = torch.nn.functional.pad(seq_idx, pad=[pad, 0], value=0) |
|
|
|
length = x.shape[1] |
|
assert length % chunk_size == 0, (length, chunk_size) |
|
|
|
if dt.is_cuda: |
|
dtype = _get_trition_dtype(x.dtype) |
|
out = mamba_ssm.ops.triton.ssd_combined.mamba_chunk_scan_combined( |
|
x.to(dtype), |
|
dt.to(dtype), |
|
A.float(), |
|
B.to(dtype), |
|
C.to(dtype), |
|
chunk_size, |
|
D=D.float(), |
|
z=z.to(dtype), |
|
initial_states=ssm_state, |
|
dt_bias=dt_bias.float(), |
|
dt_softplus=dt_softplus, |
|
seq_idx=seq_idx, |
|
return_final_states=return_final_states, |
|
) |
|
if return_final_states: |
|
return out[0][:, pad:], out[1] |
|
else: |
|
assert isinstance(out, torch.Tensor) |
|
return out[:, pad:] |
|
else: |
|
if ssm_state is None and seq_idx is None: |
|
tmp = _ssd_chunk_scan_combined_cpu( |
|
x, |
|
dt, |
|
A, |
|
B, |
|
C, |
|
chunk_size, |
|
D=D, |
|
z=z, |
|
dt_bias=dt_bias.float(), |
|
dt_softplus=dt_softplus, |
|
) |
|
else: |
|
if ssm_state is None: |
|
bsize, _, num_heads, channel = x.shape |
|
state = B.shape[-1] |
|
ssm_state = torch.zeros(bsize, num_heads, channel, state, dtype=torch.float32, device=x.device) |
|
tmp = _ssd_chunk_scan_combined_naive( |
|
x, dt, A, B, C, D, z=z, dt_bias=dt_bias, dt_softplus=dt_softplus, seq_idx=seq_idx, ssm_state=ssm_state |
|
) |
|
tmp = (tmp[0][:, pad:], tmp[1]) |
|
if return_final_states: |
|
return tmp |
|
else: |
|
return tmp[0] |
|
|
|
|
|
def _causal_conv1d_update( |
|
conv_state: torch.Tensor, weight: torch.Tensor, xBC: torch.Tensor |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
dtype = conv_state.dtype |
|
xBC = xBC.to(dtype) |
|
weight = weight.to(dtype) |
|
if conv_state.is_cuda: |
|
x = causal_conv1d.causal_conv1d_update( |
|
x=xBC, |
|
conv_state=conv_state, |
|
weight=weight[:, 0, :], |
|
activation="silu", |
|
) |
|
return x, conv_state |
|
else: |
|
x = causal_conv1d.causal_conv1d_update_ref( |
|
x=xBC, |
|
conv_state=conv_state, |
|
weight=weight[:, 0, :], |
|
activation="silu", |
|
) |
|
return x, conv_state |
|
|
|
|
|
def _causal_conv1d_naive( |
|
conv_state: torch.Tensor, weight: torch.Tensor, x: torch.Tensor, seq_idx: torch.Tensor | None |
|
) -> tuple[torch.Tensor, torch.Tensor]: |
|
length = x.shape[-1] |
|
out = torch.zeros_like(x) |
|
for i in range(length): |
|
if i != 0 and seq_idx is not None: |
|
conv_state = torch.where( |
|
(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None], |
|
torch.zeros_like(conv_state), |
|
conv_state, |
|
) |
|
out[:, :, i : i + 1], conv_state = _causal_conv1d_update(conv_state, weight, x[:, :, i : i + 1]) |
|
return out, conv_state |
|
|
|
|
|
@torch.profiler.record_function("causal_conv1d") |
|
def _causal_conv1d( |
|
conv_state: torch.Tensor | None, weight: torch.Tensor, x: torch.Tensor, seq_idx: torch.Tensor | None |
|
) -> tuple[torch.Tensor, torch.Tensor | None]: |
|
dtype = x.dtype |
|
if conv_state is not None: |
|
dtype = conv_state.dtype |
|
assert seq_idx is None |
|
if seq_idx is not None: |
|
assert seq_idx.dtype == torch.int32 |
|
assert conv_state is None |
|
weight = weight.to(dtype) |
|
x = x.to(dtype) |
|
|
|
return_final_states = conv_state is not None |
|
if weight.is_cuda: |
|
if x.stride(1) != 1: |
|
|
|
x = x.transpose(-1, -2).contiguous().transpose(-1, -2) |
|
if conv_state is not None: |
|
if conv_state.stride(1) != 1: |
|
|
|
conv_state = conv_state.transpose(-1, -2).contiguous().transpose(-1, -2) |
|
tmp = causal_conv1d.causal_conv1d_fn( |
|
x=x, |
|
weight=weight[:, 0, :], |
|
initial_states=conv_state, |
|
return_final_states=conv_state is not None, |
|
activation="silu", |
|
seq_idx=seq_idx, |
|
) |
|
if conv_state is not None: |
|
x, conv_state = tmp |
|
else: |
|
x = tmp |
|
else: |
|
if seq_idx is None: |
|
x, conv_state = causal_conv1d.causal_conv1d_ref( |
|
x=x, |
|
initial_states=conv_state, |
|
return_final_states=True, |
|
weight=weight[:, 0, :], |
|
activation="silu", |
|
) |
|
else: |
|
if conv_state is None: |
|
bsize = x.shape[0] |
|
dim = weight.shape[0] |
|
d_conv = weight.shape[-1] |
|
conv_state = torch.zeros(bsize, dim, d_conv - 1, dtype=x.dtype, device=x.device) |
|
x, conv_state = _causal_conv1d_naive(conv_state, weight, x, seq_idx) |
|
if return_final_states: |
|
return x, conv_state |
|
else: |
|
return x, None |
|
|
|
|
|
class Mamba(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig, layer_idx: int) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
self.d_state = config.mamba_d_state |
|
self.d_conv = config.mamba_d_conv |
|
self.chunk_size = config.mamba_chunk_size |
|
self.num_heads = config.mamba_num_heads |
|
|
|
self.hidden_size_per_head = config.hidden_size_per_head |
|
|
|
self.intermediate_size = self.num_heads * self.hidden_size_per_head |
|
|
|
self.in_proj = torch.nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=False) |
|
self.conv1d = torch.nn.Conv1d( |
|
in_channels=self.intermediate_size, |
|
out_channels=self.intermediate_size, |
|
bias=False, |
|
kernel_size=self.d_conv, |
|
groups=self.intermediate_size, |
|
padding=0, |
|
) |
|
self.dt_dim = max(64, self.hidden_size // 16) |
|
|
|
|
|
|
|
self.bcdt_proj = torch.nn.Linear( |
|
self.intermediate_size, |
|
self.dt_dim + 2 * self.d_state, |
|
bias=False, |
|
) |
|
self.dt_proj = torch.nn.Linear(self.dt_dim, self.num_heads, bias=False) |
|
|
|
self.dt_bias = torch.nn.Parameter(get_initial_dt_bias(self.num_heads)) |
|
self.A_log = torch.nn.Parameter(get_initial_A(self.num_heads)) |
|
self.D = torch.nn.Parameter(torch.ones(self.num_heads)) |
|
|
|
|
|
self.dt_norm_weight = torch.nn.Parameter(torch.ones(self.dt_dim)) |
|
self.B_norm_weight = torch.nn.Parameter(torch.ones(self.d_state)) |
|
self.C_norm_weight = torch.nn.Parameter(torch.ones(self.d_state)) |
|
|
|
self.out_proj = torch.nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
|
def _no_weight_decay_param_names(self) -> set[str]: |
|
return set(["D", "dt_bias", "A_log"]) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_states: Optional[PlamoCache] = None, |
|
) -> Tuple[torch.Tensor, Optional[PlamoCache]]: |
|
bsize, length, _ = hidden_states.shape |
|
is_update = length == 1 and past_states is not None |
|
|
|
bool_mask: torch.Tensor | None = None |
|
seq_idx: torch.Tensor | None = None |
|
if attention_mask is not None: |
|
if len(attention_mask.shape) == 2: |
|
attention_mask = attention_mask[None, None].expand(bsize, 1, -1, -1) |
|
assert len(attention_mask.shape) == 4 |
|
|
|
if past_states is None: |
|
|
|
bool_mask_4d = attention_mask == 0 |
|
is_first_token = _is_first_token(bool_mask_4d)[:, 0, :] |
|
seq_idx = torch.cumsum(is_first_token, dim=-1) - 1 |
|
seq_idx = seq_idx.to(torch.int32) |
|
|
|
|
|
|
|
attention_mask = attention_mask[:, 0, -length:, -length:] |
|
bool_mask = torch.diagonal(attention_mask, dim1=-2, dim2=-1) == 0 |
|
|
|
conv_state: torch.Tensor | None |
|
ssm_state: torch.Tensor | None |
|
if past_states is None: |
|
conv_state = None |
|
ssm_state = None |
|
elif past_states[self.layer_idx] is None: |
|
conv_state = torch.zeros( |
|
bsize, self.intermediate_size, self.d_conv - 1, dtype=hidden_states.dtype, device=hidden_states.device |
|
) |
|
ssm_state = torch.zeros( |
|
bsize, |
|
self.num_heads, |
|
self.hidden_size_per_head, |
|
self.d_state, |
|
dtype=torch.float32, |
|
device=hidden_states.device, |
|
) |
|
else: |
|
c = past_states[self.layer_idx] |
|
assert isinstance(c, PlamoMambaCache) |
|
conv_state = c.conv_state |
|
ssm_state = c.ssm_state |
|
|
|
zx = self.in_proj(hidden_states) |
|
zx = zx.reshape(bsize, length, self.num_heads, -1) |
|
|
|
|
|
z, x = torch.split(zx, [self.hidden_size_per_head, self.hidden_size_per_head], dim=-1) |
|
|
|
|
|
x = x.reshape(bsize, length, -1).transpose(1, 2) |
|
if bool_mask is not None: |
|
x = torch.where(bool_mask[:, None, :], x, 0.0) |
|
if is_update: |
|
assert conv_state is not None |
|
x, conv_state = _causal_conv1d_update(conv_state, self.conv1d.weight, x) |
|
else: |
|
x, conv_state = _causal_conv1d(conv_state, self.conv1d.weight, x, seq_idx=seq_idx) |
|
x = x.to(dtype=hidden_states.dtype) |
|
x = x.transpose(1, 2) |
|
x = x.reshape(bsize, length, -1) |
|
|
|
|
|
|
|
|
|
BCdt = self.bcdt_proj(x) |
|
x = x.reshape(bsize, length, self.num_heads, -1) |
|
B, C, dt = torch.split(BCdt, [self.d_state, self.d_state, self.dt_dim], dim=-1) |
|
B = B[:, :, None, :] |
|
C = C[:, :, None, :] |
|
|
|
A = -torch.exp(self.A_log.float()) |
|
dt = _rms_norm(dt, None, self.config.rms_norm_eps) * self.dt_norm_weight[None, None, :] |
|
B = _rms_norm(B, None, self.config.rms_norm_eps) * self.B_norm_weight[None, None, None, :] |
|
C = _rms_norm(C, None, self.config.rms_norm_eps) * self.C_norm_weight[None, None, None, :] |
|
|
|
|
|
dt = self.dt_proj(dt)[..., None] |
|
|
|
|
|
B = B.expand(-1, -1, self.num_heads, -1) |
|
C = C.expand(-1, -1, self.num_heads, -1) |
|
|
|
if bool_mask is not None: |
|
""" |
|
state will be updates by following: |
|
``` |
|
dt = softplus(dt) |
|
dA = exp(dt * A) |
|
state_next = state * dA + dB * x |
|
``` |
|
|
|
To avoid updating state, we set dt to -inf and x to 0 |
|
because `softplus(-inf) = 0` and `exp(0) = 1` |
|
""" |
|
dt = torch.where(bool_mask[:, :, None, None], dt, float("-inf")) |
|
x = torch.where(bool_mask[:, :, None, None], x, 0.0) |
|
|
|
|
|
if is_update: |
|
assert ssm_state is not None |
|
out = ssd_update_state( |
|
ssm_state, |
|
x[:, 0], |
|
dt[:, 0].reshape(bsize, -1), |
|
A, |
|
B[:, 0], |
|
C[:, 0], |
|
D=self.D, |
|
z=z[:, 0], |
|
dt_bias=self.dt_bias, |
|
dt_softplus=True, |
|
) |
|
else: |
|
tmp = ssd_chunk_scan_combined( |
|
x, |
|
dt.reshape(bsize, length, -1), |
|
A, |
|
B, |
|
C, |
|
self.chunk_size, |
|
D=self.D, |
|
z=z, |
|
dt_bias=self.dt_bias, |
|
dt_softplus=True, |
|
return_final_states=past_states is not None, |
|
seq_idx=seq_idx, |
|
ssm_state=ssm_state, |
|
) |
|
if past_states is not None: |
|
out, ssm_state = tmp |
|
else: |
|
assert isinstance(tmp, torch.Tensor) |
|
out = tmp |
|
|
|
y = self.out_proj(out.reshape(bsize, length, -1)) |
|
|
|
if past_states is not None: |
|
assert ssm_state is not None |
|
assert conv_state is not None |
|
past_states.update_mamba(conv_state, ssm_state, self.layer_idx) |
|
|
|
return y, past_states |
|
|
|
|
|
def swa_mask(q_len: int, kv_len: int, device: torch.device, window_size: int) -> torch.Tensor: |
|
max_len = max(q_len, kv_len) |
|
mask = ( |
|
torch.ones(max_len, max_len, dtype=torch.bool, device=device) |
|
.triu(diagonal=-window_size) |
|
.tril(diagonal=window_size) |
|
) |
|
return mask[-q_len:, -kv_len:] |
|
|
|
|
|
class Attention(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig, layer_idx: int) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer_idx = layer_idx |
|
self.hidden_size = config.hidden_size |
|
head_dim = config.hidden_size_per_head |
|
self.max_position_embeddings = config.max_position_embeddings |
|
|
|
self.q_num_heads = config.num_attention_heads |
|
self.qk_dim = self.v_dim = head_dim |
|
self.k_num_heads = self.v_num_heads = config.num_key_value_heads |
|
assert self.q_num_heads % self.k_num_heads == 0 |
|
self.n_group = self.q_num_heads // self.k_num_heads |
|
|
|
self.q_proj_dim = self.q_num_heads * self.qk_dim |
|
self.k_proj_dim = self.k_num_heads * self.qk_dim |
|
self.v_proj_dim = self.k_num_heads * self.v_dim |
|
self.qkv_proj = nn.Linear(self.hidden_size, self.q_proj_dim + self.k_proj_dim + self.v_proj_dim, bias=False) |
|
self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False) |
|
|
|
self.q_weight = torch.nn.Parameter(torch.ones((self.q_num_heads, self.qk_dim))) |
|
self.k_weight = torch.nn.Parameter(torch.ones((self.k_num_heads, self.qk_dim))) |
|
|
|
self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.config.attention_window_size) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_states: Optional[PlamoCache] = None, |
|
output_attentions: bool = False, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PlamoCache]]: |
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
qkv = self.qkv_proj(hidden_states) |
|
query_states, key_states, value_states = torch.split( |
|
qkv, [self.q_proj_dim, self.k_proj_dim, self.v_proj_dim], dim=-1 |
|
) |
|
query_states = query_states.view(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(1, 2) |
|
key_states = key_states.view(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(1, 2) |
|
value_states = value_states.view(bsz, q_len, self.v_num_heads, self.v_dim).transpose(1, 2) |
|
|
|
attn_dtype = query_states.dtype |
|
|
|
query_states = _rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None] |
|
key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None] |
|
|
|
if past_states is not None: |
|
|
|
key_states_new = key_states |
|
value_states_new = value_states |
|
key_states, value_states = past_states.append_kv(key_states, value_states, self.layer_idx) |
|
past_states.update_attention(key_states_new, value_states_new, self.layer_idx) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
device = hidden_states.device |
|
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=device)[None] |
|
q_position_ids = position_ids[:, -query_states.shape[2] :] |
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
query_states = _rotary_pos_emb(query_states, cos, sin, q_position_ids) |
|
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids) |
|
|
|
|
|
def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor: |
|
t = torch.repeat_interleave(t, repeat, dim=1) |
|
return t[:, :target] |
|
|
|
|
|
assert self.k_num_heads == self.v_num_heads |
|
key_states = _expand_kv(key_states, self.n_group, self.q_num_heads) |
|
value_states = _expand_kv(value_states, self.n_group, self.q_num_heads) |
|
|
|
full_attn = self.layer_idx in self.config.full_attention_idx |
|
|
|
query_states = query_states.to(attn_dtype) |
|
key_states = key_states.to(attn_dtype) |
|
value_states = value_states.to(attn_dtype) |
|
if attention_mask is not None and attention_mask.dtype != torch.bool: |
|
attention_mask = attention_mask.to(attn_dtype) |
|
if attention_mask is None: |
|
if not full_attn: |
|
assert key_states.shape[2] <= self.config.attention_window_size + 1 |
|
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=True) |
|
else: |
|
if attention_mask.dtype == torch.bool: |
|
attention_mask = torch.where(attention_mask, torch.tensor(0.0, dtype=torch.float), float("-inf")) |
|
if len(attention_mask.shape) == 2: |
|
attention_mask = attention_mask[None, None] |
|
assert len(attention_mask.shape) == 4 |
|
|
|
if not full_attn: |
|
m_swa = swa_mask( |
|
query_states.shape[2], key_states.shape[2], query_states.device, self.config.attention_window_size |
|
) |
|
|
|
m_swa = m_swa[None, None] |
|
attention_mask = attention_mask[:, :, -query_states.shape[2] :, -key_states.shape[2] :] |
|
attention_mask = torch.where(m_swa, attention_mask, float("-inf")) |
|
|
|
|
|
|
|
bool_mask = torch.logical_not(torch.isneginf(attention_mask)) |
|
valid_tokens = torch.sum(bool_mask, dim=-1).bool() |
|
attention_mask = torch.where(valid_tokens[..., None], attention_mask, float(0.0)) |
|
attn_output = F.scaled_dot_product_attention( |
|
query_states, key_states, value_states, attn_mask=attention_mask |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim) |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_states |
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.gate_up_proj = torch.nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False) |
|
self.down_proj = torch.nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
h = self.gate_up_proj(x) |
|
h = _swiglu(h) |
|
return self.down_proj(h) |
|
|
|
|
|
class PlamoDecoderLayer(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig, is_mamba: bool, layer_idx: int) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.is_mamba = is_mamba |
|
self.mixer: torch.nn.Module |
|
if is_mamba: |
|
self.mixer = Mamba(config, layer_idx) |
|
else: |
|
self.mixer = Attention(config, layer_idx) |
|
self.mlp = MLP(config) |
|
""" |
|
Notes: The model performance was degraded when setting all offsets to 1. |
|
""" |
|
self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0) |
|
self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / 5) |
|
self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0) |
|
self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / (5**1.5)) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
past_state: Optional[PlamoCache] = None, |
|
output_attentions: Optional[bool] = False, |
|
) -> Tuple[Any, ...]: |
|
|
|
residual = hidden_states |
|
hidden_states = self.pre_mixer_norm(hidden_states) |
|
|
|
|
|
if self.is_mamba: |
|
hidden_states_sa, present_key_value = self.mixer( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_states=past_state, |
|
) |
|
self_attn_weights = None |
|
else: |
|
hidden_states_sa, self_attn_weights, present_key_value = self.mixer( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
past_states=past_state, |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states_sa = self.post_mixer_norm(hidden_states_sa) |
|
hidden_states = residual + hidden_states_sa |
|
|
|
residual = hidden_states |
|
hidden_states = self.pre_mlp_norm(hidden_states) |
|
|
|
|
|
hidden_states_mlp = self.mlp(hidden_states) |
|
|
|
|
|
hidden_states_mlp = self.post_mlp_norm(hidden_states_mlp) |
|
hidden_states = residual + hidden_states_mlp |
|
|
|
outputs: Any = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
def is_mamba(config: PlamoConfig, i: int) -> bool: |
|
if not config.mamba_enabled: |
|
return False |
|
assert config.mamba_step > 1 |
|
assert i < config.num_hidden_layers |
|
|
|
if config.num_hidden_layers <= (config.mamba_step // 2): |
|
|
|
return i != config.num_hidden_layers - 1 |
|
return (i % config.mamba_step) != (config.mamba_step // 2) |
|
|
|
|
|
class PlamoDecoder(torch.nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
|
|
self.layers = torch.nn.ModuleList( |
|
[ |
|
PlamoDecoderLayer(config, is_mamba=is_mamba(config, i), layer_idx=i) |
|
for i in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, x: DecoderInput) -> DecoderOutput: |
|
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = () if x.output_hidden_states else None |
|
all_self_attns: Optional[Tuple[torch.Tensor, ...]] = () if x.output_attentions else None |
|
hidden_states = x.hidden_states |
|
|
|
for decoder_layer in self.layers: |
|
if x.output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
if self.training and x.gradient_checkpointing: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
decoder_layer.__call__, |
|
hidden_states, |
|
x.attention_mask, |
|
x.past_states, |
|
x.output_attentions, |
|
) |
|
else: |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=x.attention_mask, |
|
past_state=x.past_states, |
|
output_attentions=x.output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if x.output_attentions: |
|
assert layer_outputs[1] is not None |
|
assert all_self_attns is not None |
|
all_self_attns += (layer_outputs[1],) |
|
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns) |
|
|
|
|
|
class PlamoPreTrainedModel(PreTrainedModel): |
|
config_class = PlamoConfig |
|
_no_split_modules: List[str] |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["PlamoDecoderLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"] |
|
|
|
def _init_weights(self, module: torch.nn.Module) -> None: |
|
std = 0.02 |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class PlamoModel(PlamoPreTrainedModel): |
|
def __init__(self, config: PlamoConfig): |
|
super().__init__(config) |
|
assert config.eval_attention_n_bit is None |
|
assert config.eval_mlp_n_bit is None |
|
|
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) |
|
if config.image_feature_size is not None: |
|
if config.image_proj_type == "mlp": |
|
self.image_proj = MLPImageProjector(config) |
|
elif config.image_proj_type == "linear": |
|
self.image_proj = nn.Linear(config.image_feature_size, config.hidden_size, bias=False) |
|
else: |
|
raise ValueError(f"Unknown image_proj_type: {config.image_proj_type}") |
|
self.layers = PlamoDecoder(config) |
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Embedding: |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value: torch.nn.Embedding) -> None: |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask( |
|
self, |
|
attention_mask: torch.Tensor, |
|
input_shape: Tuple[int, int], |
|
inputs_embeds: Optional[torch.Tensor], |
|
past_key_values_length: int, |
|
) -> Optional[torch.Tensor]: |
|
|
|
|
|
combined_attention_mask: Optional[torch.Tensor] = None |
|
if input_shape[-1] > 1: |
|
assert inputs_embeds is not None |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
input_shape = (input_shape[0], combined_attention_mask.shape[2]) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.dim() == 4: |
|
|
|
expanded_attn_mask = attention_mask |
|
else: |
|
|
|
assert inputs_embeds is not None |
|
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( |
|
inputs_embeds.device |
|
) |
|
combined_attention_mask = ( |
|
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[PlamoCache] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
image_features: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
assert input_ids is not None |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
else: |
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values.get_seq_length() |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
if image_features is not None: |
|
assert self.config.image_token_id is not None |
|
image_embeds = self.image_proj(image_features) |
|
assert image_embeds.shape == inputs_embeds.shape, (image_embeds.shape, inputs_embeds.shape) |
|
mask = input_ids == self.config.image_token_id |
|
inputs_embeds[mask] = image_embeds[mask] |
|
|
|
|
|
require_attn_mask = False |
|
if not self.training or past_key_values is not None: |
|
require_attn_mask = True |
|
if seq_length_with_past >= self.config.attention_window_size: |
|
require_attn_mask = True |
|
if require_attn_mask and attention_mask is None: |
|
attention_mask = torch.ones( |
|
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device |
|
) |
|
if attention_mask is not None: |
|
attention_mask = self._prepare_decoder_attention_mask( |
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length |
|
) |
|
|
|
hidden_states = inputs_embeds |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
use_cache = False |
|
|
|
if use_cache and past_key_values is None: |
|
past_key_values = PlamoCache(self.config) |
|
|
|
|
|
out = self.layers( |
|
DecoderInput( |
|
hidden_states, |
|
attention_mask, |
|
past_key_values, |
|
output_hidden_states, |
|
output_attentions, |
|
self.gradient_checkpointing, |
|
) |
|
) |
|
assert isinstance(out, DecoderOutput) |
|
hidden_states = out.hidden_states |
|
all_hidden_states = out.all_hidden_states |
|
all_self_attns = out.all_self_attns |
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
assert all_hidden_states is not None |
|
all_hidden_states += (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None |
|
) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=past_key_values, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class PlamoForCausalLM(PlamoPreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
|
|
|
|
|
|
|
|
|
|
_supports_param_buffer_assignment = False |
|
|
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__(config) |
|
self.model = PlamoModel(config) |
|
|
|
self.vocab_size = config.vocab_size |
|
vocab_size = ((self.vocab_size + 15) // 16) * 16 |
|
self.lm_head: torch.nn.Module = nn.Linear(config.hidden_size, vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> torch.nn.Embedding: |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value: torch.nn.Embedding) -> None: |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self) -> torch.nn.Module: |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings: torch.nn.Module) -> None: |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder: PlamoModel) -> None: |
|
self.model = decoder |
|
|
|
def get_decoder(self) -> PlamoModel: |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
past_key_values: Optional[PlamoCache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
image_features: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, LlamaForCausalLM |
|
|
|
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) |
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) |
|
|
|
>>> prompt = "Hey, are you consciours? Can you talk to me?" |
|
>>> inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
>>> # Generate |
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) |
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] |
|
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you." |
|
```""" |
|
assert input_ids is not None |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
image_features=image_features, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
logits = logits[..., : self.vocab_size] |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids: torch.Tensor, |
|
past_key_values: Optional[PlamoCache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
image_features: Optional[torch.Tensor] = None, |
|
**kwargs: Any, |
|
) -> Dict[str, Any]: |
|
if past_key_values: |
|
input_ids = input_ids[:, -1:] |
|
if image_features is not None: |
|
image_features = image_features[:, -1:, :] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs: Dict[str, Any] = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"position_ids": position_ids, |
|
"past_key_values": past_key_values, |
|
"use_cache": kwargs.get("use_cache"), |
|
"attention_mask": attention_mask, |
|
"image_features": image_features, |
|
} |
|
) |
|
return model_inputs |
|
|
|
@staticmethod |
|
def _reorder_cache(past_key_values: PlamoCache, beam_idx: torch.Tensor) -> PlamoCache: |
|
past_key_values.reorder_cache(beam_idx) |
|
return past_key_values |
|
|
|
|
|
class MLPImageProjector(nn.Module): |
|
def __init__(self, config: PlamoConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
|
|
assert config.image_feature_size is not None |
|
|
|
|
|
self.norm0 = RMSNorm(config.image_feature_size, eps=config.rms_norm_eps) |
|
self.bias0 = Bias(config.image_feature_size) |
|
|
|
|
|
self.linear1 = nn.Linear(config.image_feature_size, config.hidden_size, bias=False) |
|
self.bias1 = Bias(config.hidden_size) |
|
self.act1 = nn.GELU() |
|
|
|
self.linear2 = nn.Linear(config.hidden_size, config.hidden_size, bias=False) |
|
self.bias2 = Bias(config.hidden_size) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> torch.Tensor: |
|
hidden_states = self.norm0(hidden_states) |
|
hidden_states = self.bias0(hidden_states) |
|
|
|
hidden_states = self.linear1(hidden_states) |
|
hidden_states = self.bias1(hidden_states) |
|
hidden_states = self.act1(hidden_states) |
|
|
|
hidden_states = self.linear2(hidden_states) |
|
hidden_states = self.bias2(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class Bias(nn.Module): |
|
def __init__(self, num_features: int) -> None: |
|
super().__init__() |
|
self._bias = nn.Parameter(torch.zeros((num_features,))) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
) -> torch.Tensor: |
|
return x + self._bias |
|
|