Add files using upload-large-folder tool
Browse files- README.md +39 -0
- config.json +49 -0
- model.safetensors +3 -0
- model.safetensors.index.json +225 -0
- modeling_plamo.py +1699 -0
- special_tokens_map.json +30 -0
- tokenization_plamo.py +392 -0
- tokenizer.jsonl +0 -0
- tokenizer_config.json +55 -0
README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- ja
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
library_name: transformers
|
8 |
+
base_model: pfnet/plamo-2-1b
|
9 |
+
tags:
|
10 |
+
- mlx
|
11 |
+
---
|
12 |
+
|
13 |
+
# mlx-community/plamo-2-1b-bf16
|
14 |
+
|
15 |
+
The Model [mlx-community/plamo-2-1b-bf16](https://huggingface.co/mlx-community/plamo-2-1b-bf16) was
|
16 |
+
converted to MLX format from [pfnet/plamo-2-1b](https://huggingface.co/pfnet/plamo-2-1b)
|
17 |
+
using mlx-lm version **0.21.5**.
|
18 |
+
|
19 |
+
## Use with mlx
|
20 |
+
|
21 |
+
```bash
|
22 |
+
pip install mlx-lm
|
23 |
+
```
|
24 |
+
|
25 |
+
```python
|
26 |
+
from mlx_lm import load, generate
|
27 |
+
|
28 |
+
model, tokenizer = load("mlx-community/plamo-2-1b-bf16")
|
29 |
+
|
30 |
+
prompt = "hello"
|
31 |
+
|
32 |
+
if tokenizer.chat_template is not None:
|
33 |
+
messages = [{"role": "user", "content": prompt}]
|
34 |
+
prompt = tokenizer.apply_chat_template(
|
35 |
+
messages, add_generation_prompt=True
|
36 |
+
)
|
37 |
+
|
38 |
+
response = generate(model, tokenizer, prompt=prompt, verbose=True)
|
39 |
+
```
|
config.json
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"PlamoForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_window_size": 2048,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "modeling_plamo.PlamoConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_plamo.PlamoForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"capacity_factor": 1.0,
|
12 |
+
"eos_token_id": 2,
|
13 |
+
"eval_attention_n_bit": null,
|
14 |
+
"eval_mlp_n_bit": null,
|
15 |
+
"expert_dropout": 0.0,
|
16 |
+
"fp8_accum_dtype": "bfloat16",
|
17 |
+
"group_size": 1024,
|
18 |
+
"hidden_size": 2048,
|
19 |
+
"hidden_size_per_head": 128,
|
20 |
+
"image_feature_size": null,
|
21 |
+
"image_proj_type": "linear",
|
22 |
+
"image_token_id": null,
|
23 |
+
"intermediate_size": 8192,
|
24 |
+
"k_expert": null,
|
25 |
+
"linear_type": "fp8",
|
26 |
+
"mamba_chunk_size": 256,
|
27 |
+
"mamba_d_conv": 4,
|
28 |
+
"mamba_d_state": 64,
|
29 |
+
"mamba_enabled": true,
|
30 |
+
"mamba_num_heads": 32,
|
31 |
+
"mamba_step": 2,
|
32 |
+
"max_position_embeddings": 10485760,
|
33 |
+
"model_type": "plamo2",
|
34 |
+
"n_expert": null,
|
35 |
+
"num_attention_heads": 16,
|
36 |
+
"num_hidden_layers": 16,
|
37 |
+
"num_key_value_heads": 1,
|
38 |
+
"rms_norm_eps": 1e-06,
|
39 |
+
"shared_intermediate_size": null,
|
40 |
+
"sliding_window": 2048,
|
41 |
+
"sparse_intermediate_size": null,
|
42 |
+
"sparse_step": null,
|
43 |
+
"tokenizer_class": "PlamoTokenizer",
|
44 |
+
"torch_dtype": "float32",
|
45 |
+
"transformers_version": "4.44.2",
|
46 |
+
"use_cache": true,
|
47 |
+
"use_predefined_initial_state": false,
|
48 |
+
"vocab_size": 100000
|
49 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3a5eacef896d4ebe5ce590df7fbfc8dc2c4f3dc4886e2ae01e7a609dd7bd827
|
3 |
+
size 2582909060
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 2582883840
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"model.embed_tokens.weight": "model.safetensors",
|
7 |
+
"model.layers.layers.0.mixer.A_log": "model.safetensors",
|
8 |
+
"model.layers.layers.0.mixer.B_norm_weight": "model.safetensors",
|
9 |
+
"model.layers.layers.0.mixer.C_norm_weight": "model.safetensors",
|
10 |
+
"model.layers.layers.0.mixer.D": "model.safetensors",
|
11 |
+
"model.layers.layers.0.mixer.bcdt_proj.weight": "model.safetensors",
|
12 |
+
"model.layers.layers.0.mixer.conv1d.weight": "model.safetensors",
|
13 |
+
"model.layers.layers.0.mixer.dt_bias": "model.safetensors",
|
14 |
+
"model.layers.layers.0.mixer.dt_norm_weight": "model.safetensors",
|
15 |
+
"model.layers.layers.0.mixer.dt_proj.weight": "model.safetensors",
|
16 |
+
"model.layers.layers.0.mixer.in_proj.weight": "model.safetensors",
|
17 |
+
"model.layers.layers.0.mixer.out_proj.weight": "model.safetensors",
|
18 |
+
"model.layers.layers.0.mlp.down_proj.weight": "model.safetensors",
|
19 |
+
"model.layers.layers.0.mlp.gate_up_proj.weight": "model.safetensors",
|
20 |
+
"model.layers.layers.0.post_mixer_norm.weight": "model.safetensors",
|
21 |
+
"model.layers.layers.0.post_mlp_norm.weight": "model.safetensors",
|
22 |
+
"model.layers.layers.0.pre_mixer_norm.weight": "model.safetensors",
|
23 |
+
"model.layers.layers.0.pre_mlp_norm.weight": "model.safetensors",
|
24 |
+
"model.layers.layers.1.mixer.k_weight": "model.safetensors",
|
25 |
+
"model.layers.layers.1.mixer.o_proj.weight": "model.safetensors",
|
26 |
+
"model.layers.layers.1.mixer.q_weight": "model.safetensors",
|
27 |
+
"model.layers.layers.1.mixer.qkv_proj.weight": "model.safetensors",
|
28 |
+
"model.layers.layers.1.mlp.down_proj.weight": "model.safetensors",
|
29 |
+
"model.layers.layers.1.mlp.gate_up_proj.weight": "model.safetensors",
|
30 |
+
"model.layers.layers.1.post_mixer_norm.weight": "model.safetensors",
|
31 |
+
"model.layers.layers.1.post_mlp_norm.weight": "model.safetensors",
|
32 |
+
"model.layers.layers.1.pre_mixer_norm.weight": "model.safetensors",
|
33 |
+
"model.layers.layers.1.pre_mlp_norm.weight": "model.safetensors",
|
34 |
+
"model.layers.layers.10.mixer.A_log": "model.safetensors",
|
35 |
+
"model.layers.layers.10.mixer.B_norm_weight": "model.safetensors",
|
36 |
+
"model.layers.layers.10.mixer.C_norm_weight": "model.safetensors",
|
37 |
+
"model.layers.layers.10.mixer.D": "model.safetensors",
|
38 |
+
"model.layers.layers.10.mixer.bcdt_proj.weight": "model.safetensors",
|
39 |
+
"model.layers.layers.10.mixer.conv1d.weight": "model.safetensors",
|
40 |
+
"model.layers.layers.10.mixer.dt_bias": "model.safetensors",
|
41 |
+
"model.layers.layers.10.mixer.dt_norm_weight": "model.safetensors",
|
42 |
+
"model.layers.layers.10.mixer.dt_proj.weight": "model.safetensors",
|
43 |
+
"model.layers.layers.10.mixer.in_proj.weight": "model.safetensors",
|
44 |
+
"model.layers.layers.10.mixer.out_proj.weight": "model.safetensors",
|
45 |
+
"model.layers.layers.10.mlp.down_proj.weight": "model.safetensors",
|
46 |
+
"model.layers.layers.10.mlp.gate_up_proj.weight": "model.safetensors",
|
47 |
+
"model.layers.layers.10.post_mixer_norm.weight": "model.safetensors",
|
48 |
+
"model.layers.layers.10.post_mlp_norm.weight": "model.safetensors",
|
49 |
+
"model.layers.layers.10.pre_mixer_norm.weight": "model.safetensors",
|
50 |
+
"model.layers.layers.10.pre_mlp_norm.weight": "model.safetensors",
|
51 |
+
"model.layers.layers.11.mixer.k_weight": "model.safetensors",
|
52 |
+
"model.layers.layers.11.mixer.o_proj.weight": "model.safetensors",
|
53 |
+
"model.layers.layers.11.mixer.q_weight": "model.safetensors",
|
54 |
+
"model.layers.layers.11.mixer.qkv_proj.weight": "model.safetensors",
|
55 |
+
"model.layers.layers.11.mlp.down_proj.weight": "model.safetensors",
|
56 |
+
"model.layers.layers.11.mlp.gate_up_proj.weight": "model.safetensors",
|
57 |
+
"model.layers.layers.11.post_mixer_norm.weight": "model.safetensors",
|
58 |
+
"model.layers.layers.11.post_mlp_norm.weight": "model.safetensors",
|
59 |
+
"model.layers.layers.11.pre_mixer_norm.weight": "model.safetensors",
|
60 |
+
"model.layers.layers.11.pre_mlp_norm.weight": "model.safetensors",
|
61 |
+
"model.layers.layers.12.mixer.A_log": "model.safetensors",
|
62 |
+
"model.layers.layers.12.mixer.B_norm_weight": "model.safetensors",
|
63 |
+
"model.layers.layers.12.mixer.C_norm_weight": "model.safetensors",
|
64 |
+
"model.layers.layers.12.mixer.D": "model.safetensors",
|
65 |
+
"model.layers.layers.12.mixer.bcdt_proj.weight": "model.safetensors",
|
66 |
+
"model.layers.layers.12.mixer.conv1d.weight": "model.safetensors",
|
67 |
+
"model.layers.layers.12.mixer.dt_bias": "model.safetensors",
|
68 |
+
"model.layers.layers.12.mixer.dt_norm_weight": "model.safetensors",
|
69 |
+
"model.layers.layers.12.mixer.dt_proj.weight": "model.safetensors",
|
70 |
+
"model.layers.layers.12.mixer.in_proj.weight": "model.safetensors",
|
71 |
+
"model.layers.layers.12.mixer.out_proj.weight": "model.safetensors",
|
72 |
+
"model.layers.layers.12.mlp.down_proj.weight": "model.safetensors",
|
73 |
+
"model.layers.layers.12.mlp.gate_up_proj.weight": "model.safetensors",
|
74 |
+
"model.layers.layers.12.post_mixer_norm.weight": "model.safetensors",
|
75 |
+
"model.layers.layers.12.post_mlp_norm.weight": "model.safetensors",
|
76 |
+
"model.layers.layers.12.pre_mixer_norm.weight": "model.safetensors",
|
77 |
+
"model.layers.layers.12.pre_mlp_norm.weight": "model.safetensors",
|
78 |
+
"model.layers.layers.13.mixer.k_weight": "model.safetensors",
|
79 |
+
"model.layers.layers.13.mixer.o_proj.weight": "model.safetensors",
|
80 |
+
"model.layers.layers.13.mixer.q_weight": "model.safetensors",
|
81 |
+
"model.layers.layers.13.mixer.qkv_proj.weight": "model.safetensors",
|
82 |
+
"model.layers.layers.13.mlp.down_proj.weight": "model.safetensors",
|
83 |
+
"model.layers.layers.13.mlp.gate_up_proj.weight": "model.safetensors",
|
84 |
+
"model.layers.layers.13.post_mixer_norm.weight": "model.safetensors",
|
85 |
+
"model.layers.layers.13.post_mlp_norm.weight": "model.safetensors",
|
86 |
+
"model.layers.layers.13.pre_mixer_norm.weight": "model.safetensors",
|
87 |
+
"model.layers.layers.13.pre_mlp_norm.weight": "model.safetensors",
|
88 |
+
"model.layers.layers.14.mixer.A_log": "model.safetensors",
|
89 |
+
"model.layers.layers.14.mixer.B_norm_weight": "model.safetensors",
|
90 |
+
"model.layers.layers.14.mixer.C_norm_weight": "model.safetensors",
|
91 |
+
"model.layers.layers.14.mixer.D": "model.safetensors",
|
92 |
+
"model.layers.layers.14.mixer.bcdt_proj.weight": "model.safetensors",
|
93 |
+
"model.layers.layers.14.mixer.conv1d.weight": "model.safetensors",
|
94 |
+
"model.layers.layers.14.mixer.dt_bias": "model.safetensors",
|
95 |
+
"model.layers.layers.14.mixer.dt_norm_weight": "model.safetensors",
|
96 |
+
"model.layers.layers.14.mixer.dt_proj.weight": "model.safetensors",
|
97 |
+
"model.layers.layers.14.mixer.in_proj.weight": "model.safetensors",
|
98 |
+
"model.layers.layers.14.mixer.out_proj.weight": "model.safetensors",
|
99 |
+
"model.layers.layers.14.mlp.down_proj.weight": "model.safetensors",
|
100 |
+
"model.layers.layers.14.mlp.gate_up_proj.weight": "model.safetensors",
|
101 |
+
"model.layers.layers.14.post_mixer_norm.weight": "model.safetensors",
|
102 |
+
"model.layers.layers.14.post_mlp_norm.weight": "model.safetensors",
|
103 |
+
"model.layers.layers.14.pre_mixer_norm.weight": "model.safetensors",
|
104 |
+
"model.layers.layers.14.pre_mlp_norm.weight": "model.safetensors",
|
105 |
+
"model.layers.layers.15.mixer.k_weight": "model.safetensors",
|
106 |
+
"model.layers.layers.15.mixer.o_proj.weight": "model.safetensors",
|
107 |
+
"model.layers.layers.15.mixer.q_weight": "model.safetensors",
|
108 |
+
"model.layers.layers.15.mixer.qkv_proj.weight": "model.safetensors",
|
109 |
+
"model.layers.layers.15.mlp.down_proj.weight": "model.safetensors",
|
110 |
+
"model.layers.layers.15.mlp.gate_up_proj.weight": "model.safetensors",
|
111 |
+
"model.layers.layers.15.post_mixer_norm.weight": "model.safetensors",
|
112 |
+
"model.layers.layers.15.post_mlp_norm.weight": "model.safetensors",
|
113 |
+
"model.layers.layers.15.pre_mixer_norm.weight": "model.safetensors",
|
114 |
+
"model.layers.layers.15.pre_mlp_norm.weight": "model.safetensors",
|
115 |
+
"model.layers.layers.2.mixer.A_log": "model.safetensors",
|
116 |
+
"model.layers.layers.2.mixer.B_norm_weight": "model.safetensors",
|
117 |
+
"model.layers.layers.2.mixer.C_norm_weight": "model.safetensors",
|
118 |
+
"model.layers.layers.2.mixer.D": "model.safetensors",
|
119 |
+
"model.layers.layers.2.mixer.bcdt_proj.weight": "model.safetensors",
|
120 |
+
"model.layers.layers.2.mixer.conv1d.weight": "model.safetensors",
|
121 |
+
"model.layers.layers.2.mixer.dt_bias": "model.safetensors",
|
122 |
+
"model.layers.layers.2.mixer.dt_norm_weight": "model.safetensors",
|
123 |
+
"model.layers.layers.2.mixer.dt_proj.weight": "model.safetensors",
|
124 |
+
"model.layers.layers.2.mixer.in_proj.weight": "model.safetensors",
|
125 |
+
"model.layers.layers.2.mixer.out_proj.weight": "model.safetensors",
|
126 |
+
"model.layers.layers.2.mlp.down_proj.weight": "model.safetensors",
|
127 |
+
"model.layers.layers.2.mlp.gate_up_proj.weight": "model.safetensors",
|
128 |
+
"model.layers.layers.2.post_mixer_norm.weight": "model.safetensors",
|
129 |
+
"model.layers.layers.2.post_mlp_norm.weight": "model.safetensors",
|
130 |
+
"model.layers.layers.2.pre_mixer_norm.weight": "model.safetensors",
|
131 |
+
"model.layers.layers.2.pre_mlp_norm.weight": "model.safetensors",
|
132 |
+
"model.layers.layers.3.mixer.k_weight": "model.safetensors",
|
133 |
+
"model.layers.layers.3.mixer.o_proj.weight": "model.safetensors",
|
134 |
+
"model.layers.layers.3.mixer.q_weight": "model.safetensors",
|
135 |
+
"model.layers.layers.3.mixer.qkv_proj.weight": "model.safetensors",
|
136 |
+
"model.layers.layers.3.mlp.down_proj.weight": "model.safetensors",
|
137 |
+
"model.layers.layers.3.mlp.gate_up_proj.weight": "model.safetensors",
|
138 |
+
"model.layers.layers.3.post_mixer_norm.weight": "model.safetensors",
|
139 |
+
"model.layers.layers.3.post_mlp_norm.weight": "model.safetensors",
|
140 |
+
"model.layers.layers.3.pre_mixer_norm.weight": "model.safetensors",
|
141 |
+
"model.layers.layers.3.pre_mlp_norm.weight": "model.safetensors",
|
142 |
+
"model.layers.layers.4.mixer.A_log": "model.safetensors",
|
143 |
+
"model.layers.layers.4.mixer.B_norm_weight": "model.safetensors",
|
144 |
+
"model.layers.layers.4.mixer.C_norm_weight": "model.safetensors",
|
145 |
+
"model.layers.layers.4.mixer.D": "model.safetensors",
|
146 |
+
"model.layers.layers.4.mixer.bcdt_proj.weight": "model.safetensors",
|
147 |
+
"model.layers.layers.4.mixer.conv1d.weight": "model.safetensors",
|
148 |
+
"model.layers.layers.4.mixer.dt_bias": "model.safetensors",
|
149 |
+
"model.layers.layers.4.mixer.dt_norm_weight": "model.safetensors",
|
150 |
+
"model.layers.layers.4.mixer.dt_proj.weight": "model.safetensors",
|
151 |
+
"model.layers.layers.4.mixer.in_proj.weight": "model.safetensors",
|
152 |
+
"model.layers.layers.4.mixer.out_proj.weight": "model.safetensors",
|
153 |
+
"model.layers.layers.4.mlp.down_proj.weight": "model.safetensors",
|
154 |
+
"model.layers.layers.4.mlp.gate_up_proj.weight": "model.safetensors",
|
155 |
+
"model.layers.layers.4.post_mixer_norm.weight": "model.safetensors",
|
156 |
+
"model.layers.layers.4.post_mlp_norm.weight": "model.safetensors",
|
157 |
+
"model.layers.layers.4.pre_mixer_norm.weight": "model.safetensors",
|
158 |
+
"model.layers.layers.4.pre_mlp_norm.weight": "model.safetensors",
|
159 |
+
"model.layers.layers.5.mixer.k_weight": "model.safetensors",
|
160 |
+
"model.layers.layers.5.mixer.o_proj.weight": "model.safetensors",
|
161 |
+
"model.layers.layers.5.mixer.q_weight": "model.safetensors",
|
162 |
+
"model.layers.layers.5.mixer.qkv_proj.weight": "model.safetensors",
|
163 |
+
"model.layers.layers.5.mlp.down_proj.weight": "model.safetensors",
|
164 |
+
"model.layers.layers.5.mlp.gate_up_proj.weight": "model.safetensors",
|
165 |
+
"model.layers.layers.5.post_mixer_norm.weight": "model.safetensors",
|
166 |
+
"model.layers.layers.5.post_mlp_norm.weight": "model.safetensors",
|
167 |
+
"model.layers.layers.5.pre_mixer_norm.weight": "model.safetensors",
|
168 |
+
"model.layers.layers.5.pre_mlp_norm.weight": "model.safetensors",
|
169 |
+
"model.layers.layers.6.mixer.A_log": "model.safetensors",
|
170 |
+
"model.layers.layers.6.mixer.B_norm_weight": "model.safetensors",
|
171 |
+
"model.layers.layers.6.mixer.C_norm_weight": "model.safetensors",
|
172 |
+
"model.layers.layers.6.mixer.D": "model.safetensors",
|
173 |
+
"model.layers.layers.6.mixer.bcdt_proj.weight": "model.safetensors",
|
174 |
+
"model.layers.layers.6.mixer.conv1d.weight": "model.safetensors",
|
175 |
+
"model.layers.layers.6.mixer.dt_bias": "model.safetensors",
|
176 |
+
"model.layers.layers.6.mixer.dt_norm_weight": "model.safetensors",
|
177 |
+
"model.layers.layers.6.mixer.dt_proj.weight": "model.safetensors",
|
178 |
+
"model.layers.layers.6.mixer.in_proj.weight": "model.safetensors",
|
179 |
+
"model.layers.layers.6.mixer.out_proj.weight": "model.safetensors",
|
180 |
+
"model.layers.layers.6.mlp.down_proj.weight": "model.safetensors",
|
181 |
+
"model.layers.layers.6.mlp.gate_up_proj.weight": "model.safetensors",
|
182 |
+
"model.layers.layers.6.post_mixer_norm.weight": "model.safetensors",
|
183 |
+
"model.layers.layers.6.post_mlp_norm.weight": "model.safetensors",
|
184 |
+
"model.layers.layers.6.pre_mixer_norm.weight": "model.safetensors",
|
185 |
+
"model.layers.layers.6.pre_mlp_norm.weight": "model.safetensors",
|
186 |
+
"model.layers.layers.7.mixer.k_weight": "model.safetensors",
|
187 |
+
"model.layers.layers.7.mixer.o_proj.weight": "model.safetensors",
|
188 |
+
"model.layers.layers.7.mixer.q_weight": "model.safetensors",
|
189 |
+
"model.layers.layers.7.mixer.qkv_proj.weight": "model.safetensors",
|
190 |
+
"model.layers.layers.7.mlp.down_proj.weight": "model.safetensors",
|
191 |
+
"model.layers.layers.7.mlp.gate_up_proj.weight": "model.safetensors",
|
192 |
+
"model.layers.layers.7.post_mixer_norm.weight": "model.safetensors",
|
193 |
+
"model.layers.layers.7.post_mlp_norm.weight": "model.safetensors",
|
194 |
+
"model.layers.layers.7.pre_mixer_norm.weight": "model.safetensors",
|
195 |
+
"model.layers.layers.7.pre_mlp_norm.weight": "model.safetensors",
|
196 |
+
"model.layers.layers.8.mixer.A_log": "model.safetensors",
|
197 |
+
"model.layers.layers.8.mixer.B_norm_weight": "model.safetensors",
|
198 |
+
"model.layers.layers.8.mixer.C_norm_weight": "model.safetensors",
|
199 |
+
"model.layers.layers.8.mixer.D": "model.safetensors",
|
200 |
+
"model.layers.layers.8.mixer.bcdt_proj.weight": "model.safetensors",
|
201 |
+
"model.layers.layers.8.mixer.conv1d.weight": "model.safetensors",
|
202 |
+
"model.layers.layers.8.mixer.dt_bias": "model.safetensors",
|
203 |
+
"model.layers.layers.8.mixer.dt_norm_weight": "model.safetensors",
|
204 |
+
"model.layers.layers.8.mixer.dt_proj.weight": "model.safetensors",
|
205 |
+
"model.layers.layers.8.mixer.in_proj.weight": "model.safetensors",
|
206 |
+
"model.layers.layers.8.mixer.out_proj.weight": "model.safetensors",
|
207 |
+
"model.layers.layers.8.mlp.down_proj.weight": "model.safetensors",
|
208 |
+
"model.layers.layers.8.mlp.gate_up_proj.weight": "model.safetensors",
|
209 |
+
"model.layers.layers.8.post_mixer_norm.weight": "model.safetensors",
|
210 |
+
"model.layers.layers.8.post_mlp_norm.weight": "model.safetensors",
|
211 |
+
"model.layers.layers.8.pre_mixer_norm.weight": "model.safetensors",
|
212 |
+
"model.layers.layers.8.pre_mlp_norm.weight": "model.safetensors",
|
213 |
+
"model.layers.layers.9.mixer.k_weight": "model.safetensors",
|
214 |
+
"model.layers.layers.9.mixer.o_proj.weight": "model.safetensors",
|
215 |
+
"model.layers.layers.9.mixer.q_weight": "model.safetensors",
|
216 |
+
"model.layers.layers.9.mixer.qkv_proj.weight": "model.safetensors",
|
217 |
+
"model.layers.layers.9.mlp.down_proj.weight": "model.safetensors",
|
218 |
+
"model.layers.layers.9.mlp.gate_up_proj.weight": "model.safetensors",
|
219 |
+
"model.layers.layers.9.post_mixer_norm.weight": "model.safetensors",
|
220 |
+
"model.layers.layers.9.post_mlp_norm.weight": "model.safetensors",
|
221 |
+
"model.layers.layers.9.pre_mixer_norm.weight": "model.safetensors",
|
222 |
+
"model.layers.layers.9.pre_mlp_norm.weight": "model.safetensors",
|
223 |
+
"model.norm.weight": "model.safetensors"
|
224 |
+
}
|
225 |
+
}
|
modeling_plamo.py
ADDED
@@ -0,0 +1,1699 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import enum
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
from typing import Any, Dict, List, Literal, NamedTuple, Optional, Tuple, Union
|
5 |
+
|
6 |
+
try:
|
7 |
+
# It is difficult to install mamba_ssm in login node because
|
8 |
+
# it requires GPU for installation
|
9 |
+
import mamba_ssm
|
10 |
+
except ModuleNotFoundError:
|
11 |
+
warnings.warn("mamba_ssm could not be imported", stacklevel=2)
|
12 |
+
try:
|
13 |
+
# It is difficult to install causal_conv1d in login node because
|
14 |
+
# it requires GPU for installation
|
15 |
+
import causal_conv1d.causal_conv1d_interface as causal_conv1d
|
16 |
+
except ModuleNotFoundError:
|
17 |
+
warnings.warn("causal_conv1d could not be imported", stacklevel=2)
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
from torch.nn import functional as F
|
21 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
22 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
23 |
+
|
24 |
+
|
25 |
+
def _is_first_token(mask: torch.Tensor) -> torch.Tensor:
|
26 |
+
assert mask.dtype == torch.bool
|
27 |
+
B, Nh, q_len, kv_len = mask.shape
|
28 |
+
mask = mask[:, :, :, -q_len:]
|
29 |
+
cont = q_len != kv_len
|
30 |
+
v = False if cont else True
|
31 |
+
out = torch.logical_not(torch.diagonal(mask, offset=-1, dim1=-2, dim2=-1).bool())
|
32 |
+
out = torch.cat(
|
33 |
+
[
|
34 |
+
torch.full(size=(B, Nh, 1), dtype=torch.bool, device=out.device, fill_value=v),
|
35 |
+
out,
|
36 |
+
],
|
37 |
+
dim=-1,
|
38 |
+
)
|
39 |
+
return out
|
40 |
+
|
41 |
+
|
42 |
+
def _swiglu(h: torch.Tensor) -> torch.Tensor:
|
43 |
+
h0, h1 = h.chunk(2, dim=-1)
|
44 |
+
return torch.nn.functional.silu(h0) * h1
|
45 |
+
|
46 |
+
|
47 |
+
class RotaryEmbedding(torch.nn.Module):
|
48 |
+
def __init__(
|
49 |
+
self, dim: int, max_position_embeddings: int = 2048, base: int = 10000, device: Optional[torch.device] = None
|
50 |
+
) -> None:
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
self.dim = dim
|
54 |
+
self.max_position_embeddings = max_position_embeddings
|
55 |
+
self.base = base
|
56 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
57 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
58 |
+
|
59 |
+
# Build here to make `torch.jit.trace` work.
|
60 |
+
self._set_cos_sin_cache(
|
61 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
62 |
+
)
|
63 |
+
|
64 |
+
def _set_cos_sin_cache(self, seq_len: int, device: Any, dtype: Any) -> None:
|
65 |
+
self.max_seq_len_cached = seq_len
|
66 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) # type: ignore
|
67 |
+
|
68 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
69 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
70 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
71 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
72 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
73 |
+
|
74 |
+
def forward(self, x: torch.Tensor, seq_len: int) -> Tuple[torch.Tensor, torch.Tensor]:
|
75 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
76 |
+
if seq_len > self.max_seq_len_cached:
|
77 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
78 |
+
|
79 |
+
return (
|
80 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
|
81 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), # type: ignore
|
82 |
+
)
|
83 |
+
|
84 |
+
|
85 |
+
def _rotate_half(x: torch.Tensor) -> torch.Tensor:
|
86 |
+
"""Rotates half the hidden dims of the input."""
|
87 |
+
x1 = x[..., : x.shape[-1] // 2]
|
88 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
89 |
+
return torch.cat((-x2, x1), dim=-1)
|
90 |
+
|
91 |
+
|
92 |
+
def _rotary_pos_emb(x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor:
|
93 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
94 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
95 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
96 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
97 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
98 |
+
x_embed = (x * cos) + (_rotate_half(x) * sin)
|
99 |
+
return x_embed
|
100 |
+
|
101 |
+
|
102 |
+
class LinearType(str, enum.Enum):
|
103 |
+
Normal = "normal"
|
104 |
+
Fp8 = "fp8"
|
105 |
+
Fp8Retain = "fp8-retain"
|
106 |
+
|
107 |
+
|
108 |
+
class PlamoConfig(PretrainedConfig): # type: ignore
|
109 |
+
model_type: str = "plamo"
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
hidden_size: int = 4096,
|
114 |
+
num_hidden_layers: int = 32,
|
115 |
+
rms_norm_eps: float = 1e-6,
|
116 |
+
tie_word_embeddings: bool = True,
|
117 |
+
# Attention
|
118 |
+
num_attention_heads: int = 32,
|
119 |
+
num_key_value_heads: int = 4,
|
120 |
+
hidden_size_per_head: int = 128,
|
121 |
+
max_position_embeddings: int = 2048,
|
122 |
+
attention_window_size: int = 2048,
|
123 |
+
full_attention_idx: list[int] | None = None,
|
124 |
+
# Mamba
|
125 |
+
mamba_d_state: int = 64,
|
126 |
+
mamba_d_conv: int = 4,
|
127 |
+
mamba_num_heads: int = 64,
|
128 |
+
mamba_step: int = 2,
|
129 |
+
mamba_chunk_size: int = 256,
|
130 |
+
mamba_enabled: bool = True,
|
131 |
+
# MLP
|
132 |
+
intermediate_size: int = 13312,
|
133 |
+
# Tokenizer
|
134 |
+
vocab_size: int = 32000,
|
135 |
+
tokenizer_class: str = "PlamoTokenizer",
|
136 |
+
pad_token_id: Optional[int] = None,
|
137 |
+
bos_token_id: int = 1,
|
138 |
+
eos_token_id: int = 2,
|
139 |
+
# Multimodal
|
140 |
+
image_token_id: Optional[int] = None,
|
141 |
+
image_feature_size: Optional[int] = None,
|
142 |
+
image_proj_type: Literal["linear", "mlp"] = "linear",
|
143 |
+
# FP8
|
144 |
+
linear_type: LinearType = LinearType.Normal,
|
145 |
+
fp8_accum_dtype: Optional[str] = None,
|
146 |
+
# Evaluation
|
147 |
+
eval_attention_n_bit: Optional[int] = None,
|
148 |
+
eval_mlp_n_bit: Optional[int] = None,
|
149 |
+
use_cache: bool = True,
|
150 |
+
**kwargs: Any,
|
151 |
+
) -> None:
|
152 |
+
# max_position_embeddings is often used to determine the max length during inference,
|
153 |
+
# but samba should have extrapolation abilities
|
154 |
+
self.max_position_embeddings = max(10 * 1024 * 1024, max_position_embeddings)
|
155 |
+
self.hidden_size = hidden_size
|
156 |
+
self.rms_norm_eps = rms_norm_eps
|
157 |
+
|
158 |
+
self.num_hidden_layers = num_hidden_layers
|
159 |
+
self.num_attention_heads = num_attention_heads
|
160 |
+
self.hidden_size_per_head = hidden_size_per_head
|
161 |
+
self.num_key_value_heads = num_key_value_heads
|
162 |
+
self.attention_window_size = attention_window_size
|
163 |
+
self.full_attention_idx = full_attention_idx if full_attention_idx is not None else []
|
164 |
+
|
165 |
+
self.mamba_d_state = mamba_d_state
|
166 |
+
self.mamba_d_conv = mamba_d_conv
|
167 |
+
self.mamba_num_heads = mamba_num_heads
|
168 |
+
self.mamba_step = mamba_step
|
169 |
+
self.mamba_chunk_size = mamba_chunk_size
|
170 |
+
self.mamba_enabled = mamba_enabled
|
171 |
+
|
172 |
+
self.intermediate_size = intermediate_size
|
173 |
+
|
174 |
+
self.vocab_size = vocab_size
|
175 |
+
|
176 |
+
self.image_token_id = image_token_id
|
177 |
+
self.image_feature_size = image_feature_size
|
178 |
+
self.image_proj_type = image_proj_type
|
179 |
+
|
180 |
+
self.linear_type = linear_type
|
181 |
+
self.fp8_accum_dtype = fp8_accum_dtype
|
182 |
+
|
183 |
+
self.eval_attention_n_bit = eval_attention_n_bit
|
184 |
+
self.eval_mlp_n_bit = eval_mlp_n_bit
|
185 |
+
self.use_cache = use_cache
|
186 |
+
|
187 |
+
# fields for vLLM
|
188 |
+
self.sliding_window = attention_window_size
|
189 |
+
|
190 |
+
super().__init__(
|
191 |
+
tokenizer_class=tokenizer_class,
|
192 |
+
pad_token_id=pad_token_id,
|
193 |
+
bos_token_id=bos_token_id,
|
194 |
+
eos_token_id=eos_token_id,
|
195 |
+
tie_word_embeddings=tie_word_embeddings,
|
196 |
+
**kwargs,
|
197 |
+
)
|
198 |
+
|
199 |
+
|
200 |
+
class PlamoAttentionCache(torch.nn.Module):
|
201 |
+
def __init__(self, key: torch.Tensor, value: torch.Tensor) -> None:
|
202 |
+
super().__init__()
|
203 |
+
B, nh, L, c = key.shape
|
204 |
+
assert len(value.shape) == 4
|
205 |
+
assert value.shape[0] == B
|
206 |
+
assert value.shape[2] == L
|
207 |
+
self.register_parameter("key", torch.nn.Parameter(key, requires_grad=False))
|
208 |
+
self.register_parameter("value", torch.nn.Parameter(value, requires_grad=False))
|
209 |
+
|
210 |
+
|
211 |
+
class PlamoMambaCache(torch.nn.Module):
|
212 |
+
def __init__(self, conv_state: torch.Tensor, ssm_state: torch.Tensor) -> None:
|
213 |
+
super().__init__()
|
214 |
+
# conv_state: [B, C, d_conv]
|
215 |
+
# ssm_state: [B, nhead, nchanel_per_head, d_state]
|
216 |
+
assert len(conv_state.shape) == 3
|
217 |
+
assert len(ssm_state.shape) == 4
|
218 |
+
assert conv_state.shape[0] == ssm_state.shape[0]
|
219 |
+
self.register_parameter("conv_state", torch.nn.Parameter(conv_state, requires_grad=False))
|
220 |
+
self.register_parameter("ssm_state", torch.nn.Parameter(ssm_state, requires_grad=False))
|
221 |
+
|
222 |
+
|
223 |
+
PlamoLayerCache = PlamoAttentionCache | PlamoMambaCache
|
224 |
+
|
225 |
+
|
226 |
+
class PlamoCache(torch.nn.Module):
|
227 |
+
"""
|
228 |
+
stores states of the model for fast decoding.
|
229 |
+
`transformers` uses `transformers.Cache` for this purpose, but the interface and variable names are
|
230 |
+
deeply dependent on Transformers architecture (e.g., `key_states`) and it is difficult to use
|
231 |
+
other architectures (e.g., Mamba).
|
232 |
+
This class provides a similar interface to `transformers.Cache`, but is designed to also handle
|
233 |
+
the state of Mamba properly.
|
234 |
+
"""
|
235 |
+
|
236 |
+
def __init__(self, config: PlamoConfig) -> None:
|
237 |
+
super().__init__()
|
238 |
+
self.config = config
|
239 |
+
self.cache = torch.nn.ModuleList([None for _ in range(config.num_hidden_layers)]) # type: ignore
|
240 |
+
|
241 |
+
def append_kv(self, key: torch.Tensor, value: torch.Tensor, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]:
|
242 |
+
c = self.cache[layer_idx]
|
243 |
+
if c is None:
|
244 |
+
return key, value
|
245 |
+
assert isinstance(c, PlamoAttentionCache)
|
246 |
+
|
247 |
+
def _validate(cache: torch.Tensor, new_tensor: torch.Tensor) -> None:
|
248 |
+
assert len(cache.shape) == 4
|
249 |
+
assert len(new_tensor.shape) == 4
|
250 |
+
assert cache.shape[0] == new_tensor.shape[0]
|
251 |
+
assert cache.shape[1] == new_tensor.shape[1]
|
252 |
+
assert cache.shape[3] == new_tensor.shape[3]
|
253 |
+
|
254 |
+
_validate(c.key, key)
|
255 |
+
_validate(c.value, value)
|
256 |
+
assert key.shape[2] == value.shape[2]
|
257 |
+
return torch.cat([c.key, key], dim=2), torch.cat([c.value, value], dim=2)
|
258 |
+
|
259 |
+
def update_attention(
|
260 |
+
self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int
|
261 |
+
) -> PlamoAttentionCache:
|
262 |
+
full_attn = layer_idx in self.config.full_attention_idx
|
263 |
+
window_size = self.config.attention_window_size
|
264 |
+
|
265 |
+
if self.cache[layer_idx] is None:
|
266 |
+
if full_attn:
|
267 |
+
self.cache[layer_idx] = PlamoAttentionCache(key_states, value_states)
|
268 |
+
else:
|
269 |
+
self.cache[layer_idx] = PlamoAttentionCache(
|
270 |
+
key_states[:, :, -window_size:, :], value_states[:, :, -window_size:, :]
|
271 |
+
)
|
272 |
+
else:
|
273 |
+
c = self.cache[layer_idx]
|
274 |
+
assert isinstance(c, PlamoAttentionCache)
|
275 |
+
k, v = self.append_kv(key_states, value_states, layer_idx)
|
276 |
+
if full_attn:
|
277 |
+
c.key.data = k
|
278 |
+
c.value.data = v
|
279 |
+
else:
|
280 |
+
c.key.data = k[:, :, -window_size:, :]
|
281 |
+
c.value.data = v[:, :, -window_size:, :]
|
282 |
+
return self.cache[layer_idx] # type: ignore
|
283 |
+
|
284 |
+
def update_mamba(self, conv_state: torch.Tensor, ssm_state: torch.Tensor, layer_idx: int) -> PlamoMambaCache:
|
285 |
+
if self.cache[layer_idx] is None:
|
286 |
+
self.cache[layer_idx] = PlamoMambaCache(conv_state, ssm_state)
|
287 |
+
else:
|
288 |
+
c = self.cache[layer_idx]
|
289 |
+
assert isinstance(c, PlamoMambaCache)
|
290 |
+
assert c.conv_state.shape == conv_state.shape
|
291 |
+
assert c.ssm_state.shape == ssm_state.shape
|
292 |
+
c.conv_state.data = conv_state
|
293 |
+
c.ssm_state.data = ssm_state
|
294 |
+
return self.cache[layer_idx] # type: ignore
|
295 |
+
|
296 |
+
def __getitem__(self, layer_idx: int) -> PlamoLayerCache | None:
|
297 |
+
assert layer_idx < len(self.cache)
|
298 |
+
layer_cache = self.cache[layer_idx]
|
299 |
+
return layer_cache # type: ignore
|
300 |
+
|
301 |
+
def __len__(self) -> int:
|
302 |
+
return len(self.cache)
|
303 |
+
|
304 |
+
def get_seq_length(self, layer_idx: Optional[int] = None) -> int:
|
305 |
+
if layer_idx is not None:
|
306 |
+
c = self.cache[layer_idx]
|
307 |
+
assert isinstance(c, PlamoAttentionCache)
|
308 |
+
return c.key.shape[2] # type: ignore
|
309 |
+
|
310 |
+
sequence_length: int | None = None
|
311 |
+
for layer_cache in self.cache:
|
312 |
+
if isinstance(layer_cache, PlamoAttentionCache):
|
313 |
+
sequence_length = (
|
314 |
+
max(layer_cache.key.shape[2], sequence_length)
|
315 |
+
if sequence_length is not None
|
316 |
+
else layer_cache.key.shape[2]
|
317 |
+
)
|
318 |
+
assert sequence_length is not None
|
319 |
+
return sequence_length
|
320 |
+
|
321 |
+
def get_max_length(self) -> int | None:
|
322 |
+
return None
|
323 |
+
|
324 |
+
def get_usable_length(self, new_seq_length: int, layer_idx: Optional[int] = 0) -> int:
|
325 |
+
"""Given the sequence length of the new inputs, returns the usable length of the cache."""
|
326 |
+
# Cache without size limit -> all cache is usable
|
327 |
+
# Cache with size limit -> if the length cache plus the length of the new inputs is larger the maximum cache
|
328 |
+
# length, we will need to evict part of the cache (and thus not all cache is usable)
|
329 |
+
max_length = self.get_max_length()
|
330 |
+
previous_seq_length = self.get_seq_length(layer_idx)
|
331 |
+
if max_length is not None and previous_seq_length + new_seq_length > max_length:
|
332 |
+
return max_length - new_seq_length
|
333 |
+
return previous_seq_length
|
334 |
+
|
335 |
+
def reorder_cache(self, beam_idx: torch.Tensor) -> None:
|
336 |
+
def _mamba(cache: PlamoMambaCache) -> PlamoMambaCache:
|
337 |
+
return PlamoMambaCache(
|
338 |
+
conv_state=cache.conv_state.index_select(0, beam_idx),
|
339 |
+
ssm_state=cache.ssm_state.index_select(0, beam_idx),
|
340 |
+
)
|
341 |
+
|
342 |
+
def _attention(cache: PlamoAttentionCache) -> PlamoAttentionCache:
|
343 |
+
return PlamoAttentionCache(
|
344 |
+
key=cache.key.index_select(0, beam_idx),
|
345 |
+
value=cache.value.index_select(0, beam_idx),
|
346 |
+
)
|
347 |
+
|
348 |
+
for i in range(len(self.cache)):
|
349 |
+
if self.cache[i] is None:
|
350 |
+
continue
|
351 |
+
layer_cache = self.cache[i]
|
352 |
+
if isinstance(layer_cache, PlamoMambaCache):
|
353 |
+
self.cache[i] = _mamba(layer_cache)
|
354 |
+
else:
|
355 |
+
assert isinstance(layer_cache, PlamoAttentionCache)
|
356 |
+
self.cache[i] = _attention(layer_cache)
|
357 |
+
|
358 |
+
@property
|
359 |
+
def seen_tokens(self) -> int | None:
|
360 |
+
return None
|
361 |
+
|
362 |
+
|
363 |
+
class DecoderInput(NamedTuple):
|
364 |
+
hidden_states: torch.Tensor
|
365 |
+
attention_mask: Optional[torch.Tensor] = None
|
366 |
+
past_states: Optional[PlamoCache] = None
|
367 |
+
output_hidden_states: Optional[bool] = False
|
368 |
+
output_attentions: Optional[bool] = False
|
369 |
+
gradient_checkpointing: bool = False
|
370 |
+
input_ids: Optional[torch.Tensor] = None
|
371 |
+
|
372 |
+
|
373 |
+
class DecoderOutput(NamedTuple):
|
374 |
+
hidden_states: torch.Tensor
|
375 |
+
all_hidden_states: Optional[Tuple[torch.Tensor, ...]]
|
376 |
+
all_self_attns: Optional[Tuple[torch.Tensor, ...]]
|
377 |
+
|
378 |
+
|
379 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
380 |
+
def _make_causal_mask(
|
381 |
+
input_ids_shape: Tuple[int, int], dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
382 |
+
) -> torch.Tensor:
|
383 |
+
"""
|
384 |
+
Make causal mask used for bi-directional self-attention.
|
385 |
+
"""
|
386 |
+
bsz, tgt_len = input_ids_shape
|
387 |
+
mask = torch.full((tgt_len, tgt_len), float("-inf"), device=device)
|
388 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
389 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
390 |
+
mask = mask.to(dtype)
|
391 |
+
|
392 |
+
if past_key_values_length > 0:
|
393 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
394 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
395 |
+
|
396 |
+
|
397 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
398 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None) -> torch.Tensor:
|
399 |
+
"""
|
400 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
401 |
+
"""
|
402 |
+
bsz, src_len = mask.size()
|
403 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
404 |
+
|
405 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
406 |
+
|
407 |
+
inverted_mask = 1.0 - expanded_mask
|
408 |
+
|
409 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), float("-inf")) # type: ignore
|
410 |
+
|
411 |
+
|
412 |
+
def _rms_norm(
|
413 |
+
hidden_states: torch.Tensor, weight: Optional[torch.Tensor], eps: float, offset: float = 1.0
|
414 |
+
) -> torch.Tensor:
|
415 |
+
input_dtype = hidden_states.dtype
|
416 |
+
hidden_states = hidden_states.to(torch.float32)
|
417 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
418 |
+
hidden_states = hidden_states * torch.rsqrt(variance + eps)
|
419 |
+
hidden_states = hidden_states.to(input_dtype)
|
420 |
+
if weight is not None:
|
421 |
+
hidden_states = (offset + weight) * hidden_states
|
422 |
+
return hidden_states
|
423 |
+
|
424 |
+
|
425 |
+
class RMSNorm(nn.Module):
|
426 |
+
def __init__(
|
427 |
+
self,
|
428 |
+
hidden_size: int,
|
429 |
+
eps: float = 1e-6,
|
430 |
+
offset: float = 1.0,
|
431 |
+
device: Optional[Union[torch.device, str]] = None,
|
432 |
+
) -> None:
|
433 |
+
super().__init__()
|
434 |
+
self.weight = nn.Parameter(torch.zeros(hidden_size, device=device))
|
435 |
+
self.variance_epsilon = eps
|
436 |
+
self.offset = offset
|
437 |
+
|
438 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
439 |
+
return _rms_norm(hidden_states, self.weight, self.variance_epsilon, offset=self.offset)
|
440 |
+
|
441 |
+
|
442 |
+
def get_initial_dt_bias(num_heads: int) -> torch.Tensor:
|
443 |
+
dt_min = 0.001
|
444 |
+
dt_max = 0.1
|
445 |
+
dt = torch.exp(torch.rand(num_heads) * (math.log(dt_max) - math.log(dt_min)) + math.log(dt_min))
|
446 |
+
dt = torch.clamp(dt, 1e-4)
|
447 |
+
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
448 |
+
return inv_dt
|
449 |
+
|
450 |
+
|
451 |
+
def get_initial_A(num_heads: int) -> torch.Tensor:
|
452 |
+
A = torch.arange(1, num_heads + 1, dtype=torch.float32)
|
453 |
+
return torch.log(A)
|
454 |
+
|
455 |
+
|
456 |
+
def _bf16_supported_in_triton() -> bool:
|
457 |
+
# newer torch (2.2.0 and later?) supports bfloat16 even when using Voltas
|
458 |
+
# but triton cannot compile bf16 kernels for Volta
|
459 |
+
major, _ = torch.cuda.get_device_capability()
|
460 |
+
return major >= 8
|
461 |
+
|
462 |
+
|
463 |
+
def _get_trition_dtype(dtype: torch.dtype) -> torch.dtype:
|
464 |
+
if dtype != torch.bfloat16:
|
465 |
+
return dtype
|
466 |
+
if _bf16_supported_in_triton():
|
467 |
+
return dtype
|
468 |
+
return torch.float32
|
469 |
+
|
470 |
+
|
471 |
+
def ssd_update_state(
|
472 |
+
ssm_state: torch.Tensor,
|
473 |
+
x: torch.Tensor,
|
474 |
+
dt: torch.Tensor,
|
475 |
+
A: torch.Tensor,
|
476 |
+
B: torch.Tensor,
|
477 |
+
C: torch.Tensor,
|
478 |
+
D: torch.Tensor,
|
479 |
+
z: torch.Tensor,
|
480 |
+
dt_bias: torch.Tensor,
|
481 |
+
dt_softplus: bool,
|
482 |
+
) -> torch.Tensor:
|
483 |
+
assert ssm_state.dtype == torch.float32
|
484 |
+
if dt.is_cuda:
|
485 |
+
dtype = _get_trition_dtype(x.dtype)
|
486 |
+
else:
|
487 |
+
dtype = x.dtype
|
488 |
+
if dt.is_cuda:
|
489 |
+
f = mamba_ssm.ops.triton.selective_state_update.selective_state_update
|
490 |
+
else:
|
491 |
+
f = mamba_ssm.ops.triton.selective_state_update.selective_state_update_ref
|
492 |
+
|
493 |
+
hidden_size_per_head = x.shape[-1]
|
494 |
+
d_state = B.shape[-1]
|
495 |
+
A = A[:, None, None].expand(-1, hidden_size_per_head, d_state).float()
|
496 |
+
dt = dt[..., None].expand(-1, -1, hidden_size_per_head)
|
497 |
+
dt_bias = dt_bias[:, None].expand(-1, hidden_size_per_head)
|
498 |
+
D = D[:, None].expand(-1, hidden_size_per_head)
|
499 |
+
assert ssm_state.dtype == torch.float32
|
500 |
+
out = f(
|
501 |
+
ssm_state,
|
502 |
+
x.to(dtype),
|
503 |
+
dt.to(dtype),
|
504 |
+
A.float(),
|
505 |
+
B.to(dtype),
|
506 |
+
C.to(dtype),
|
507 |
+
D.float(),
|
508 |
+
z.to(dtype),
|
509 |
+
dt_bias.float(),
|
510 |
+
dt_softplus=dt_softplus,
|
511 |
+
)
|
512 |
+
return out[:, None] # type: ignore
|
513 |
+
|
514 |
+
|
515 |
+
def _ssd_chunk_scan_combined_naive(
|
516 |
+
x: torch.Tensor,
|
517 |
+
dt: torch.Tensor,
|
518 |
+
A: torch.Tensor,
|
519 |
+
B: torch.Tensor,
|
520 |
+
C: torch.Tensor,
|
521 |
+
D: torch.Tensor,
|
522 |
+
z: torch.Tensor,
|
523 |
+
dt_bias: torch.Tensor,
|
524 |
+
dt_softplus: bool,
|
525 |
+
seq_idx: torch.Tensor | None,
|
526 |
+
ssm_state: torch.Tensor,
|
527 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
528 |
+
assert ssm_state.dtype == torch.float32
|
529 |
+
length = x.shape[1]
|
530 |
+
ys = []
|
531 |
+
for i in range(length):
|
532 |
+
if i != 0 and seq_idx is not None:
|
533 |
+
ssm_state = torch.where(
|
534 |
+
(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None, None],
|
535 |
+
torch.zeros_like(ssm_state),
|
536 |
+
ssm_state,
|
537 |
+
)
|
538 |
+
y = ssd_update_state(
|
539 |
+
ssm_state,
|
540 |
+
x[:, i],
|
541 |
+
dt[:, i],
|
542 |
+
A,
|
543 |
+
B[:, i],
|
544 |
+
C[:, i],
|
545 |
+
D,
|
546 |
+
z=z[:, i],
|
547 |
+
dt_bias=dt_bias,
|
548 |
+
dt_softplus=dt_softplus,
|
549 |
+
)
|
550 |
+
ys.append(y)
|
551 |
+
return torch.cat(ys, dim=1), ssm_state
|
552 |
+
|
553 |
+
|
554 |
+
def _ssd_chunk_scan_combined_cpu(
|
555 |
+
x: torch.Tensor,
|
556 |
+
dt: torch.Tensor,
|
557 |
+
A: torch.Tensor,
|
558 |
+
B: torch.Tensor,
|
559 |
+
C: torch.Tensor,
|
560 |
+
chunk_size: int,
|
561 |
+
D: torch.Tensor,
|
562 |
+
z: torch.Tensor,
|
563 |
+
dt_bias: torch.Tensor,
|
564 |
+
dt_softplus: bool,
|
565 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
566 |
+
# (bsize, nhead, nchunk, chunk_size)
|
567 |
+
dt = dt.float() # We want high precision for this before cumsum
|
568 |
+
dt = dt.permute(0, 2, 1).unflatten(2, (-1, chunk_size)) # type: ignore
|
569 |
+
if dt_bias is not None:
|
570 |
+
dt = dt + dt_bias[None, :, None, None]
|
571 |
+
if dt_softplus:
|
572 |
+
dt = F.softplus(dt)
|
573 |
+
dA = dt * A[None, :, None, None]
|
574 |
+
dA_cumsum = torch.cumsum(dA, dim=-1)
|
575 |
+
|
576 |
+
_, _, nheads, _ = x.shape
|
577 |
+
dstate = B.shape[-1]
|
578 |
+
_ = dt.shape[2]
|
579 |
+
|
580 |
+
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_chunk_state"):
|
581 |
+
# Following is equivalent to `mamba_ssm.ops.triton.ssd_combined.chunk_state_ref(B, x, dt, dA_cumsum)`
|
582 |
+
# But `einsum` in the above function is too slow in CPU.
|
583 |
+
x_ = torch.unflatten(x, 1, (-1, chunk_size))
|
584 |
+
assert B.shape[2] == nheads # B should be already expanded
|
585 |
+
B_ = torch.unflatten(B, 1, (-1, chunk_size)).to(x.dtype) # (bsize, nchunk, chunk_size, nheads, dstate)
|
586 |
+
decay_states = torch.exp((dA_cumsum[:, :, :, -1:] - dA_cumsum)).to(x.dtype)
|
587 |
+
dt_ = dt.to(x.dtype)
|
588 |
+
|
589 |
+
# einsum("bclhn,bhcl,bhcl,bclhp->bchpn", B_, decay_states, dt_, x_)
|
590 |
+
B_ = B_.permute(0, 1, 3, 4, 2) # bchnl
|
591 |
+
tmp = dt_ * decay_states # bhcl
|
592 |
+
tmp = tmp.permute(0, 2, 1, 3)[:, :, :, None] # bch1l
|
593 |
+
tmp = B_ * tmp # bchnl
|
594 |
+
x_ = x_.permute(0, 1, 3, 2, 4) # bchlp
|
595 |
+
tmp = tmp @ x_ # bchnp
|
596 |
+
states = tmp.permute(0, 1, 2, 4, 3) # bchpn
|
597 |
+
|
598 |
+
states_dtype = states.dtype
|
599 |
+
if states.dtype not in [torch.float32, torch.float64]:
|
600 |
+
states = states.to(torch.float32)
|
601 |
+
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_state_passing"):
|
602 |
+
out, last_state = mamba_ssm.ops.triton.ssd_combined.state_passing_ref(
|
603 |
+
states.flatten(start_dim=-2, end_dim=-1),
|
604 |
+
dA_cumsum[:, :, :, -1],
|
605 |
+
)
|
606 |
+
states = torch.unflatten(out, -1, (-1, dstate))
|
607 |
+
last_state = torch.unflatten(last_state, -1, (-1, dstate))
|
608 |
+
states = states.to(states_dtype)
|
609 |
+
with torch.profiler.record_function("ssd_chunk_scan_combined_cpu_chunk_scan"):
|
610 |
+
out = mamba_ssm.ops.triton.ssd_combined.chunk_scan_ref(B, C, x, dt, dA_cumsum, states, D=D, z=z)
|
611 |
+
|
612 |
+
return out, last_state
|
613 |
+
|
614 |
+
|
615 |
+
@torch.profiler.record_function("ssd_chunk_scan_combined")
|
616 |
+
def ssd_chunk_scan_combined(
|
617 |
+
x: torch.Tensor,
|
618 |
+
dt: torch.Tensor,
|
619 |
+
A: torch.Tensor,
|
620 |
+
B: torch.Tensor,
|
621 |
+
C: torch.Tensor,
|
622 |
+
chunk_size: int,
|
623 |
+
D: torch.Tensor,
|
624 |
+
z: torch.Tensor,
|
625 |
+
dt_bias: torch.Tensor,
|
626 |
+
dt_softplus: bool,
|
627 |
+
return_final_states: bool,
|
628 |
+
seq_idx: torch.Tensor | None,
|
629 |
+
ssm_state: torch.Tensor | None,
|
630 |
+
) -> tuple[torch.Tensor, torch.Tensor] | torch.Tensor:
|
631 |
+
if seq_idx is not None:
|
632 |
+
assert seq_idx.dtype == torch.int32
|
633 |
+
assert ssm_state is None
|
634 |
+
assert not return_final_states
|
635 |
+
if ssm_state is not None:
|
636 |
+
assert ssm_state.dtype == torch.float32
|
637 |
+
assert seq_idx is None
|
638 |
+
|
639 |
+
length = x.shape[1]
|
640 |
+
|
641 |
+
"""
|
642 |
+
state will be updates by following:
|
643 |
+
```
|
644 |
+
dt = softplus(dt)
|
645 |
+
dA = exp(dt * A)
|
646 |
+
state_next = state * dA + dB * x
|
647 |
+
```
|
648 |
+
|
649 |
+
To avoid updating state, we set dt to -inf and x to 0
|
650 |
+
because `softplus(-inf) = 0` and `exp(0) = 1`
|
651 |
+
"""
|
652 |
+
pad = (chunk_size - length % chunk_size) % chunk_size
|
653 |
+
x = torch.nn.functional.pad(x, pad=[0, 0, 0, 0, pad, 0], value=0.0)
|
654 |
+
dt = torch.nn.functional.pad(dt, pad=[0, 0, pad, 0], value=float("-inf"))
|
655 |
+
B = torch.nn.functional.pad(B, pad=[0, 0, 0, 0, pad, 0], value=0.0)
|
656 |
+
C = torch.nn.functional.pad(C, pad=[0, 0, 0, 0, pad, 0], value=0.0)
|
657 |
+
z = torch.nn.functional.pad(z, pad=[0, 0, 0, 0, pad, 0], value=0.0)
|
658 |
+
if seq_idx is not None:
|
659 |
+
seq_idx = torch.nn.functional.pad(seq_idx, pad=[pad, 0], value=0)
|
660 |
+
|
661 |
+
length = x.shape[1]
|
662 |
+
assert length % chunk_size == 0, (length, chunk_size)
|
663 |
+
|
664 |
+
if dt.is_cuda:
|
665 |
+
dtype = _get_trition_dtype(x.dtype)
|
666 |
+
out = mamba_ssm.ops.triton.ssd_combined.mamba_chunk_scan_combined( # type: ignore
|
667 |
+
x.to(dtype),
|
668 |
+
dt.to(dtype),
|
669 |
+
A.float(),
|
670 |
+
B.to(dtype),
|
671 |
+
C.to(dtype),
|
672 |
+
chunk_size,
|
673 |
+
D=D.float(),
|
674 |
+
z=z.to(dtype),
|
675 |
+
initial_states=ssm_state,
|
676 |
+
dt_bias=dt_bias.float(),
|
677 |
+
dt_softplus=dt_softplus,
|
678 |
+
seq_idx=seq_idx,
|
679 |
+
return_final_states=return_final_states,
|
680 |
+
)
|
681 |
+
if return_final_states:
|
682 |
+
return out[0][:, pad:], out[1]
|
683 |
+
else:
|
684 |
+
assert isinstance(out, torch.Tensor)
|
685 |
+
return out[:, pad:]
|
686 |
+
else:
|
687 |
+
if ssm_state is None and seq_idx is None:
|
688 |
+
tmp = _ssd_chunk_scan_combined_cpu(
|
689 |
+
x,
|
690 |
+
dt,
|
691 |
+
A,
|
692 |
+
B,
|
693 |
+
C,
|
694 |
+
chunk_size,
|
695 |
+
D=D,
|
696 |
+
z=z,
|
697 |
+
dt_bias=dt_bias.float(),
|
698 |
+
dt_softplus=dt_softplus,
|
699 |
+
)
|
700 |
+
else:
|
701 |
+
if ssm_state is None:
|
702 |
+
bsize, _, num_heads, channel = x.shape
|
703 |
+
state = B.shape[-1]
|
704 |
+
ssm_state = torch.zeros(bsize, num_heads, channel, state, dtype=torch.float32, device=x.device)
|
705 |
+
tmp = _ssd_chunk_scan_combined_naive(
|
706 |
+
x, dt, A, B, C, D, z=z, dt_bias=dt_bias, dt_softplus=dt_softplus, seq_idx=seq_idx, ssm_state=ssm_state
|
707 |
+
)
|
708 |
+
tmp = (tmp[0][:, pad:], tmp[1])
|
709 |
+
if return_final_states:
|
710 |
+
return tmp
|
711 |
+
else:
|
712 |
+
return tmp[0]
|
713 |
+
|
714 |
+
|
715 |
+
def _causal_conv1d_update(
|
716 |
+
conv_state: torch.Tensor, weight: torch.Tensor, xBC: torch.Tensor
|
717 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
718 |
+
dtype = conv_state.dtype
|
719 |
+
xBC = xBC.to(dtype)
|
720 |
+
weight = weight.to(dtype)
|
721 |
+
if conv_state.is_cuda:
|
722 |
+
x = causal_conv1d.causal_conv1d_update(
|
723 |
+
x=xBC,
|
724 |
+
conv_state=conv_state,
|
725 |
+
weight=weight[:, 0, :],
|
726 |
+
activation="silu",
|
727 |
+
)
|
728 |
+
return x, conv_state
|
729 |
+
else:
|
730 |
+
x = causal_conv1d.causal_conv1d_update_ref(
|
731 |
+
x=xBC,
|
732 |
+
conv_state=conv_state,
|
733 |
+
weight=weight[:, 0, :],
|
734 |
+
activation="silu",
|
735 |
+
)
|
736 |
+
return x, conv_state
|
737 |
+
|
738 |
+
|
739 |
+
def _causal_conv1d_naive(
|
740 |
+
conv_state: torch.Tensor, weight: torch.Tensor, x: torch.Tensor, seq_idx: torch.Tensor | None
|
741 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
742 |
+
length = x.shape[-1]
|
743 |
+
out = torch.zeros_like(x)
|
744 |
+
for i in range(length):
|
745 |
+
if i != 0 and seq_idx is not None:
|
746 |
+
conv_state = torch.where(
|
747 |
+
(seq_idx[:, i - 1] != seq_idx[:, i])[:, None, None],
|
748 |
+
torch.zeros_like(conv_state),
|
749 |
+
conv_state,
|
750 |
+
)
|
751 |
+
out[:, :, i : i + 1], conv_state = _causal_conv1d_update(conv_state, weight, x[:, :, i : i + 1])
|
752 |
+
return out, conv_state
|
753 |
+
|
754 |
+
|
755 |
+
@torch.profiler.record_function("causal_conv1d")
|
756 |
+
def _causal_conv1d(
|
757 |
+
conv_state: torch.Tensor | None, weight: torch.Tensor, x: torch.Tensor, seq_idx: torch.Tensor | None
|
758 |
+
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
759 |
+
dtype = x.dtype
|
760 |
+
if conv_state is not None:
|
761 |
+
dtype = conv_state.dtype
|
762 |
+
assert seq_idx is None
|
763 |
+
if seq_idx is not None:
|
764 |
+
assert seq_idx.dtype == torch.int32
|
765 |
+
assert conv_state is None
|
766 |
+
weight = weight.to(dtype)
|
767 |
+
x = x.to(dtype)
|
768 |
+
|
769 |
+
return_final_states = conv_state is not None
|
770 |
+
if weight.is_cuda:
|
771 |
+
if x.stride(1) != 1:
|
772 |
+
# to channel-last format
|
773 |
+
x = x.transpose(-1, -2).contiguous().transpose(-1, -2)
|
774 |
+
if conv_state is not None:
|
775 |
+
if conv_state.stride(1) != 1:
|
776 |
+
# to channel-last format
|
777 |
+
conv_state = conv_state.transpose(-1, -2).contiguous().transpose(-1, -2)
|
778 |
+
tmp = causal_conv1d.causal_conv1d_fn(
|
779 |
+
x=x,
|
780 |
+
weight=weight[:, 0, :],
|
781 |
+
initial_states=conv_state,
|
782 |
+
return_final_states=conv_state is not None,
|
783 |
+
activation="silu",
|
784 |
+
seq_idx=seq_idx,
|
785 |
+
)
|
786 |
+
if conv_state is not None:
|
787 |
+
x, conv_state = tmp
|
788 |
+
else:
|
789 |
+
x = tmp
|
790 |
+
else:
|
791 |
+
if seq_idx is None:
|
792 |
+
x, conv_state = causal_conv1d.causal_conv1d_ref(
|
793 |
+
x=x,
|
794 |
+
initial_states=conv_state,
|
795 |
+
return_final_states=True,
|
796 |
+
weight=weight[:, 0, :],
|
797 |
+
activation="silu",
|
798 |
+
)
|
799 |
+
else:
|
800 |
+
if conv_state is None:
|
801 |
+
bsize = x.shape[0]
|
802 |
+
dim = weight.shape[0]
|
803 |
+
d_conv = weight.shape[-1]
|
804 |
+
conv_state = torch.zeros(bsize, dim, d_conv - 1, dtype=x.dtype, device=x.device)
|
805 |
+
x, conv_state = _causal_conv1d_naive(conv_state, weight, x, seq_idx)
|
806 |
+
if return_final_states:
|
807 |
+
return x, conv_state
|
808 |
+
else:
|
809 |
+
return x, None
|
810 |
+
|
811 |
+
|
812 |
+
class Mamba(torch.nn.Module):
|
813 |
+
def __init__(self, config: PlamoConfig, layer_idx: int) -> None:
|
814 |
+
super().__init__()
|
815 |
+
self.config = config
|
816 |
+
self.layer_idx = layer_idx
|
817 |
+
self.hidden_size = config.hidden_size
|
818 |
+
self.d_state = config.mamba_d_state
|
819 |
+
self.d_conv = config.mamba_d_conv
|
820 |
+
self.chunk_size = config.mamba_chunk_size
|
821 |
+
self.num_heads = config.mamba_num_heads
|
822 |
+
# TODO add mamba_hidden_size_per_head config (?)
|
823 |
+
self.hidden_size_per_head = config.hidden_size_per_head
|
824 |
+
|
825 |
+
self.intermediate_size = self.num_heads * self.hidden_size_per_head
|
826 |
+
|
827 |
+
self.in_proj = torch.nn.Linear(self.hidden_size, 2 * self.intermediate_size, bias=False)
|
828 |
+
self.conv1d = torch.nn.Conv1d(
|
829 |
+
in_channels=self.intermediate_size,
|
830 |
+
out_channels=self.intermediate_size,
|
831 |
+
bias=False, # TODO the original implementation uses bias
|
832 |
+
kernel_size=self.d_conv,
|
833 |
+
groups=self.intermediate_size,
|
834 |
+
padding=0,
|
835 |
+
)
|
836 |
+
self.dt_dim = max(64, self.hidden_size // 16)
|
837 |
+
# Notes:
|
838 |
+
# Mamba2 removes this linear projection for simplicity (Figure 6 in the paper),
|
839 |
+
# but it may degrade the ability of content-length extrapolation.
|
840 |
+
self.bcdt_proj = torch.nn.Linear(
|
841 |
+
self.intermediate_size,
|
842 |
+
self.dt_dim + 2 * self.d_state,
|
843 |
+
bias=False,
|
844 |
+
)
|
845 |
+
self.dt_proj = torch.nn.Linear(self.dt_dim, self.num_heads, bias=False)
|
846 |
+
|
847 |
+
self.dt_bias = torch.nn.Parameter(get_initial_dt_bias(self.num_heads))
|
848 |
+
self.A_log = torch.nn.Parameter(get_initial_A(self.num_heads))
|
849 |
+
self.D = torch.nn.Parameter(torch.ones(self.num_heads))
|
850 |
+
|
851 |
+
# TODO norm weight before gating like Mamba2
|
852 |
+
self.dt_norm_weight = torch.nn.Parameter(torch.ones(self.dt_dim))
|
853 |
+
self.B_norm_weight = torch.nn.Parameter(torch.ones(self.d_state))
|
854 |
+
self.C_norm_weight = torch.nn.Parameter(torch.ones(self.d_state))
|
855 |
+
|
856 |
+
self.out_proj = torch.nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
857 |
+
|
858 |
+
def _no_weight_decay_param_names(self) -> set[str]:
|
859 |
+
return set(["D", "dt_bias", "A_log"])
|
860 |
+
|
861 |
+
def forward(
|
862 |
+
self,
|
863 |
+
hidden_states: torch.Tensor,
|
864 |
+
attention_mask: Optional[torch.Tensor] = None,
|
865 |
+
past_states: Optional[PlamoCache] = None,
|
866 |
+
) -> Tuple[torch.Tensor, Optional[PlamoCache]]:
|
867 |
+
bsize, length, _ = hidden_states.shape
|
868 |
+
is_update = length == 1 and past_states is not None
|
869 |
+
|
870 |
+
bool_mask: torch.Tensor | None = None
|
871 |
+
seq_idx: torch.Tensor | None = None
|
872 |
+
if attention_mask is not None:
|
873 |
+
if len(attention_mask.shape) == 2:
|
874 |
+
attention_mask = attention_mask[None, None].expand(bsize, 1, -1, -1)
|
875 |
+
assert len(attention_mask.shape) == 4
|
876 |
+
|
877 |
+
if past_states is None:
|
878 |
+
# TODO: support seq_idx with cache
|
879 |
+
bool_mask_4d = attention_mask == 0
|
880 |
+
is_first_token = _is_first_token(bool_mask_4d)[:, 0, :]
|
881 |
+
seq_idx = torch.cumsum(is_first_token, dim=-1) - 1
|
882 |
+
seq_idx = seq_idx.to(torch.int32)
|
883 |
+
|
884 |
+
# `generate` function creates attention mask that contains past tokens,
|
885 |
+
# but mamba does not use them
|
886 |
+
attention_mask = attention_mask[:, 0, -length:, -length:]
|
887 |
+
bool_mask = torch.diagonal(attention_mask, dim1=-2, dim2=-1) == 0
|
888 |
+
|
889 |
+
conv_state: torch.Tensor | None
|
890 |
+
ssm_state: torch.Tensor | None
|
891 |
+
if past_states is None:
|
892 |
+
conv_state = None
|
893 |
+
ssm_state = None
|
894 |
+
elif past_states[self.layer_idx] is None:
|
895 |
+
conv_state = torch.zeros(
|
896 |
+
bsize, self.intermediate_size, self.d_conv - 1, dtype=hidden_states.dtype, device=hidden_states.device
|
897 |
+
)
|
898 |
+
ssm_state = torch.zeros(
|
899 |
+
bsize,
|
900 |
+
self.num_heads,
|
901 |
+
self.hidden_size_per_head,
|
902 |
+
self.d_state,
|
903 |
+
dtype=torch.float32,
|
904 |
+
device=hidden_states.device,
|
905 |
+
)
|
906 |
+
else:
|
907 |
+
c = past_states[self.layer_idx]
|
908 |
+
assert isinstance(c, PlamoMambaCache)
|
909 |
+
conv_state = c.conv_state
|
910 |
+
ssm_state = c.ssm_state
|
911 |
+
|
912 |
+
zx = self.in_proj(hidden_states)
|
913 |
+
zx = zx.reshape(bsize, length, self.num_heads, -1)
|
914 |
+
# z: (bsize, length, num_heads, hidden_size_per_head)
|
915 |
+
# x: (bsize, length, num_heads, hidden_size_per_head)
|
916 |
+
z, x = torch.split(zx, [self.hidden_size_per_head, self.hidden_size_per_head], dim=-1)
|
917 |
+
|
918 |
+
# conv
|
919 |
+
x = x.reshape(bsize, length, -1).transpose(1, 2) # (bsize, intermediate_size, length)
|
920 |
+
if bool_mask is not None:
|
921 |
+
x = torch.where(bool_mask[:, None, :], x, 0.0)
|
922 |
+
if is_update:
|
923 |
+
assert conv_state is not None
|
924 |
+
x, conv_state = _causal_conv1d_update(conv_state, self.conv1d.weight, x)
|
925 |
+
else:
|
926 |
+
x, conv_state = _causal_conv1d(conv_state, self.conv1d.weight, x, seq_idx=seq_idx)
|
927 |
+
x = x.to(dtype=hidden_states.dtype)
|
928 |
+
x = x.transpose(1, 2) # (bsize, length, intermediate_size)
|
929 |
+
x = x.reshape(bsize, length, -1)
|
930 |
+
# x: (bsize, length, num_heads, hidden_size_per_head)
|
931 |
+
# B: (bsize, length, 1, d_state)
|
932 |
+
# C: (bsize, length, 1, d_state)
|
933 |
+
# dt: (bsize, length, dt_dim)
|
934 |
+
BCdt = self.bcdt_proj(x)
|
935 |
+
x = x.reshape(bsize, length, self.num_heads, -1)
|
936 |
+
B, C, dt = torch.split(BCdt, [self.d_state, self.d_state, self.dt_dim], dim=-1)
|
937 |
+
B = B[:, :, None, :]
|
938 |
+
C = C[:, :, None, :]
|
939 |
+
|
940 |
+
A = -torch.exp(self.A_log.float()) # (num_heads,)
|
941 |
+
dt = _rms_norm(dt, None, self.config.rms_norm_eps) * self.dt_norm_weight[None, None, :]
|
942 |
+
B = _rms_norm(B, None, self.config.rms_norm_eps) * self.B_norm_weight[None, None, None, :]
|
943 |
+
C = _rms_norm(C, None, self.config.rms_norm_eps) * self.C_norm_weight[None, None, None, :]
|
944 |
+
|
945 |
+
# (bsize, length, num_heads, 1)
|
946 |
+
dt = self.dt_proj(dt)[..., None]
|
947 |
+
|
948 |
+
# TODO it may not be required
|
949 |
+
B = B.expand(-1, -1, self.num_heads, -1)
|
950 |
+
C = C.expand(-1, -1, self.num_heads, -1)
|
951 |
+
|
952 |
+
if bool_mask is not None:
|
953 |
+
"""
|
954 |
+
state will be updates by following:
|
955 |
+
```
|
956 |
+
dt = softplus(dt)
|
957 |
+
dA = exp(dt * A)
|
958 |
+
state_next = state * dA + dB * x
|
959 |
+
```
|
960 |
+
|
961 |
+
To avoid updating state, we set dt to -inf and x to 0
|
962 |
+
because `softplus(-inf) = 0` and `exp(0) = 1`
|
963 |
+
"""
|
964 |
+
dt = torch.where(bool_mask[:, :, None, None], dt, float("-inf"))
|
965 |
+
x = torch.where(bool_mask[:, :, None, None], x, 0.0)
|
966 |
+
|
967 |
+
# ssm
|
968 |
+
if is_update:
|
969 |
+
assert ssm_state is not None
|
970 |
+
out = ssd_update_state(
|
971 |
+
ssm_state,
|
972 |
+
x[:, 0],
|
973 |
+
dt[:, 0].reshape(bsize, -1),
|
974 |
+
A,
|
975 |
+
B[:, 0],
|
976 |
+
C[:, 0],
|
977 |
+
D=self.D,
|
978 |
+
z=z[:, 0],
|
979 |
+
dt_bias=self.dt_bias,
|
980 |
+
dt_softplus=True,
|
981 |
+
)
|
982 |
+
else:
|
983 |
+
tmp = ssd_chunk_scan_combined(
|
984 |
+
x,
|
985 |
+
dt.reshape(bsize, length, -1),
|
986 |
+
A,
|
987 |
+
B,
|
988 |
+
C,
|
989 |
+
self.chunk_size,
|
990 |
+
D=self.D,
|
991 |
+
z=z,
|
992 |
+
dt_bias=self.dt_bias,
|
993 |
+
dt_softplus=True,
|
994 |
+
return_final_states=past_states is not None,
|
995 |
+
seq_idx=seq_idx,
|
996 |
+
ssm_state=ssm_state,
|
997 |
+
)
|
998 |
+
if past_states is not None:
|
999 |
+
out, ssm_state = tmp
|
1000 |
+
else:
|
1001 |
+
assert isinstance(tmp, torch.Tensor)
|
1002 |
+
out = tmp
|
1003 |
+
|
1004 |
+
y = self.out_proj(out.reshape(bsize, length, -1))
|
1005 |
+
|
1006 |
+
if past_states is not None:
|
1007 |
+
assert ssm_state is not None
|
1008 |
+
assert conv_state is not None
|
1009 |
+
past_states.update_mamba(conv_state, ssm_state, self.layer_idx)
|
1010 |
+
|
1011 |
+
return y, past_states
|
1012 |
+
|
1013 |
+
|
1014 |
+
def swa_mask(q_len: int, kv_len: int, device: torch.device, window_size: int) -> torch.Tensor:
|
1015 |
+
max_len = max(q_len, kv_len)
|
1016 |
+
mask = (
|
1017 |
+
torch.ones(max_len, max_len, dtype=torch.bool, device=device)
|
1018 |
+
.triu(diagonal=-window_size)
|
1019 |
+
.tril(diagonal=window_size)
|
1020 |
+
)
|
1021 |
+
return mask[-q_len:, -kv_len:]
|
1022 |
+
|
1023 |
+
|
1024 |
+
class Attention(torch.nn.Module):
|
1025 |
+
def __init__(self, config: PlamoConfig, layer_idx: int) -> None:
|
1026 |
+
super().__init__()
|
1027 |
+
self.config = config
|
1028 |
+
self.layer_idx = layer_idx
|
1029 |
+
self.hidden_size = config.hidden_size
|
1030 |
+
head_dim = config.hidden_size_per_head
|
1031 |
+
self.max_position_embeddings = config.max_position_embeddings
|
1032 |
+
|
1033 |
+
self.q_num_heads = config.num_attention_heads
|
1034 |
+
self.qk_dim = self.v_dim = head_dim
|
1035 |
+
self.k_num_heads = self.v_num_heads = config.num_key_value_heads
|
1036 |
+
assert self.q_num_heads % self.k_num_heads == 0
|
1037 |
+
self.n_group = self.q_num_heads // self.k_num_heads
|
1038 |
+
|
1039 |
+
self.q_proj_dim = self.q_num_heads * self.qk_dim
|
1040 |
+
self.k_proj_dim = self.k_num_heads * self.qk_dim
|
1041 |
+
self.v_proj_dim = self.k_num_heads * self.v_dim
|
1042 |
+
self.qkv_proj = nn.Linear(self.hidden_size, self.q_proj_dim + self.k_proj_dim + self.v_proj_dim, bias=False)
|
1043 |
+
self.o_proj = nn.Linear(self.q_num_heads * self.v_dim, self.hidden_size, bias=False)
|
1044 |
+
|
1045 |
+
self.q_weight = torch.nn.Parameter(torch.ones((self.q_num_heads, self.qk_dim)))
|
1046 |
+
self.k_weight = torch.nn.Parameter(torch.ones((self.k_num_heads, self.qk_dim)))
|
1047 |
+
|
1048 |
+
self.rotary_emb = RotaryEmbedding(self.qk_dim, max_position_embeddings=self.config.attention_window_size)
|
1049 |
+
|
1050 |
+
def forward(
|
1051 |
+
self,
|
1052 |
+
hidden_states: torch.Tensor,
|
1053 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1054 |
+
past_states: Optional[PlamoCache] = None,
|
1055 |
+
output_attentions: bool = False,
|
1056 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[PlamoCache]]:
|
1057 |
+
bsz, q_len, _ = hidden_states.size()
|
1058 |
+
|
1059 |
+
qkv = self.qkv_proj(hidden_states)
|
1060 |
+
query_states, key_states, value_states = torch.split(
|
1061 |
+
qkv, [self.q_proj_dim, self.k_proj_dim, self.v_proj_dim], dim=-1
|
1062 |
+
)
|
1063 |
+
query_states = query_states.view(bsz, q_len, self.q_num_heads, self.qk_dim).transpose(1, 2)
|
1064 |
+
key_states = key_states.view(bsz, q_len, self.k_num_heads, self.qk_dim).transpose(1, 2)
|
1065 |
+
value_states = value_states.view(bsz, q_len, self.v_num_heads, self.v_dim).transpose(1, 2)
|
1066 |
+
|
1067 |
+
attn_dtype = query_states.dtype
|
1068 |
+
|
1069 |
+
query_states = _rms_norm(query_states, None, 1e-6) * self.q_weight[None, :, None]
|
1070 |
+
key_states = _rms_norm(key_states, None, 1e-6) * self.k_weight[None, :, None]
|
1071 |
+
|
1072 |
+
if past_states is not None:
|
1073 |
+
# reuse k, v, self_attention
|
1074 |
+
key_states_new = key_states
|
1075 |
+
value_states_new = value_states
|
1076 |
+
key_states, value_states = past_states.append_kv(key_states, value_states, self.layer_idx) # type: ignore
|
1077 |
+
past_states.update_attention(key_states_new, value_states_new, self.layer_idx)
|
1078 |
+
|
1079 |
+
kv_seq_len = key_states.shape[-2]
|
1080 |
+
device = hidden_states.device
|
1081 |
+
position_ids = torch.arange(kv_seq_len, dtype=torch.long, device=device)[None]
|
1082 |
+
q_position_ids = position_ids[:, -query_states.shape[2] :]
|
1083 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
1084 |
+
query_states = _rotary_pos_emb(query_states, cos, sin, q_position_ids)
|
1085 |
+
key_states = _rotary_pos_emb(key_states, cos, sin, position_ids)
|
1086 |
+
# [bsz, nh, t, hd]
|
1087 |
+
|
1088 |
+
def _expand_kv(t: torch.Tensor, repeat: int, target: int) -> torch.Tensor:
|
1089 |
+
t = torch.repeat_interleave(t, repeat, dim=1)
|
1090 |
+
return t[:, :target]
|
1091 |
+
|
1092 |
+
# expand shared kv
|
1093 |
+
assert self.k_num_heads == self.v_num_heads
|
1094 |
+
key_states = _expand_kv(key_states, self.n_group, self.q_num_heads)
|
1095 |
+
value_states = _expand_kv(value_states, self.n_group, self.q_num_heads)
|
1096 |
+
|
1097 |
+
full_attn = self.layer_idx in self.config.full_attention_idx
|
1098 |
+
|
1099 |
+
query_states = query_states.to(attn_dtype)
|
1100 |
+
key_states = key_states.to(attn_dtype)
|
1101 |
+
value_states = value_states.to(attn_dtype)
|
1102 |
+
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
1103 |
+
attention_mask = attention_mask.to(attn_dtype)
|
1104 |
+
if attention_mask is None:
|
1105 |
+
if not full_attn:
|
1106 |
+
assert key_states.shape[2] <= self.config.attention_window_size + 1
|
1107 |
+
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, is_causal=True)
|
1108 |
+
else:
|
1109 |
+
if attention_mask.dtype == torch.bool:
|
1110 |
+
attention_mask = torch.where(attention_mask, torch.tensor(0.0, dtype=torch.float), float("-inf"))
|
1111 |
+
if len(attention_mask.shape) == 2:
|
1112 |
+
attention_mask = attention_mask[None, None]
|
1113 |
+
assert len(attention_mask.shape) == 4
|
1114 |
+
|
1115 |
+
if not full_attn:
|
1116 |
+
m_swa = swa_mask(
|
1117 |
+
query_states.shape[2], key_states.shape[2], query_states.device, self.config.attention_window_size
|
1118 |
+
)
|
1119 |
+
# `generate` function creates attention mask that does not consider sliding window
|
1120 |
+
m_swa = m_swa[None, None]
|
1121 |
+
attention_mask = attention_mask[:, :, -query_states.shape[2] :, -key_states.shape[2] :]
|
1122 |
+
attention_mask = torch.where(m_swa, attention_mask, float("-inf"))
|
1123 |
+
|
1124 |
+
# like AttentionMaskConverter._unmask_unattended in huggingface.transfoermers,
|
1125 |
+
# we need to attend to all tokens in masked rows for `scaled_dot_product_attention`
|
1126 |
+
bool_mask = torch.logical_not(torch.isneginf(attention_mask))
|
1127 |
+
valid_tokens = torch.sum(bool_mask, dim=-1).bool() # (..., q_len)
|
1128 |
+
attention_mask = torch.where(valid_tokens[..., None], attention_mask, float(0.0))
|
1129 |
+
attn_output = F.scaled_dot_product_attention(
|
1130 |
+
query_states, key_states, value_states, attn_mask=attention_mask
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
attn_output = attn_output.transpose(1, 2)
|
1134 |
+
|
1135 |
+
attn_output = attn_output.reshape(bsz, q_len, self.q_num_heads * self.v_dim)
|
1136 |
+
attn_output = self.o_proj(attn_output)
|
1137 |
+
|
1138 |
+
if not output_attentions:
|
1139 |
+
attn_weights = None
|
1140 |
+
|
1141 |
+
return attn_output, attn_weights, past_states
|
1142 |
+
|
1143 |
+
|
1144 |
+
class MLP(nn.Module):
|
1145 |
+
def __init__(self, config: PlamoConfig) -> None:
|
1146 |
+
super().__init__()
|
1147 |
+
self.config = config
|
1148 |
+
self.hidden_size = config.hidden_size
|
1149 |
+
self.intermediate_size = config.intermediate_size
|
1150 |
+
self.gate_up_proj = torch.nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
1151 |
+
self.down_proj = torch.nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
1152 |
+
|
1153 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
1154 |
+
h = self.gate_up_proj(x)
|
1155 |
+
h = _swiglu(h)
|
1156 |
+
return self.down_proj(h) # type: ignore
|
1157 |
+
|
1158 |
+
|
1159 |
+
class PlamoDecoderLayer(torch.nn.Module):
|
1160 |
+
def __init__(self, config: PlamoConfig, is_mamba: bool, layer_idx: int) -> None:
|
1161 |
+
super().__init__()
|
1162 |
+
self.config = config
|
1163 |
+
self.hidden_size = config.hidden_size
|
1164 |
+
self.is_mamba = is_mamba
|
1165 |
+
self.mixer: torch.nn.Module
|
1166 |
+
if is_mamba:
|
1167 |
+
self.mixer = Mamba(config, layer_idx)
|
1168 |
+
else:
|
1169 |
+
self.mixer = Attention(config, layer_idx)
|
1170 |
+
self.mlp = MLP(config)
|
1171 |
+
"""
|
1172 |
+
Notes: The model performance was degraded when setting all offsets to 1.
|
1173 |
+
"""
|
1174 |
+
self.pre_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0)
|
1175 |
+
self.post_mixer_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / 5)
|
1176 |
+
self.pre_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0)
|
1177 |
+
self.post_mlp_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, offset=1.0 / (5**1.5))
|
1178 |
+
|
1179 |
+
def forward(
|
1180 |
+
self,
|
1181 |
+
hidden_states: torch.Tensor,
|
1182 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1183 |
+
past_state: Optional[PlamoCache] = None,
|
1184 |
+
output_attentions: Optional[bool] = False,
|
1185 |
+
) -> Tuple[Any, ...]:
|
1186 |
+
# from LlamaDecoder
|
1187 |
+
residual = hidden_states
|
1188 |
+
hidden_states = self.pre_mixer_norm(hidden_states)
|
1189 |
+
|
1190 |
+
# Self Attention
|
1191 |
+
if self.is_mamba:
|
1192 |
+
hidden_states_sa, present_key_value = self.mixer(
|
1193 |
+
hidden_states=hidden_states,
|
1194 |
+
attention_mask=attention_mask,
|
1195 |
+
past_states=past_state,
|
1196 |
+
)
|
1197 |
+
self_attn_weights = None
|
1198 |
+
else:
|
1199 |
+
hidden_states_sa, self_attn_weights, present_key_value = self.mixer(
|
1200 |
+
hidden_states=hidden_states,
|
1201 |
+
attention_mask=attention_mask,
|
1202 |
+
past_states=past_state,
|
1203 |
+
output_attentions=output_attentions,
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
hidden_states_sa = self.post_mixer_norm(hidden_states_sa)
|
1207 |
+
hidden_states = residual + hidden_states_sa
|
1208 |
+
|
1209 |
+
residual = hidden_states
|
1210 |
+
hidden_states = self.pre_mlp_norm(hidden_states)
|
1211 |
+
|
1212 |
+
# Fully Connected
|
1213 |
+
hidden_states_mlp = self.mlp(hidden_states)
|
1214 |
+
|
1215 |
+
# Residual
|
1216 |
+
hidden_states_mlp = self.post_mlp_norm(hidden_states_mlp)
|
1217 |
+
hidden_states = residual + hidden_states_mlp
|
1218 |
+
|
1219 |
+
outputs: Any = (hidden_states,)
|
1220 |
+
|
1221 |
+
if output_attentions:
|
1222 |
+
outputs += (self_attn_weights,)
|
1223 |
+
|
1224 |
+
return outputs # type: ignore
|
1225 |
+
|
1226 |
+
|
1227 |
+
def is_mamba(config: PlamoConfig, i: int) -> bool:
|
1228 |
+
if not config.mamba_enabled:
|
1229 |
+
return False
|
1230 |
+
assert config.mamba_step > 1
|
1231 |
+
assert i < config.num_hidden_layers
|
1232 |
+
|
1233 |
+
if config.num_hidden_layers <= (config.mamba_step // 2):
|
1234 |
+
# use attention in last layer
|
1235 |
+
return i != config.num_hidden_layers - 1
|
1236 |
+
return (i % config.mamba_step) != (config.mamba_step // 2)
|
1237 |
+
|
1238 |
+
|
1239 |
+
class PlamoDecoder(torch.nn.Module):
|
1240 |
+
def __init__(self, config: PlamoConfig) -> None:
|
1241 |
+
super().__init__()
|
1242 |
+
|
1243 |
+
self.layers = torch.nn.ModuleList(
|
1244 |
+
[
|
1245 |
+
PlamoDecoderLayer(config, is_mamba=is_mamba(config, i), layer_idx=i)
|
1246 |
+
for i in range(config.num_hidden_layers)
|
1247 |
+
]
|
1248 |
+
)
|
1249 |
+
self.gradient_checkpointing = False
|
1250 |
+
|
1251 |
+
def forward(self, x: DecoderInput) -> DecoderOutput:
|
1252 |
+
all_hidden_states: Optional[Tuple[torch.Tensor, ...]] = () if x.output_hidden_states else None
|
1253 |
+
all_self_attns: Optional[Tuple[torch.Tensor, ...]] = () if x.output_attentions else None
|
1254 |
+
hidden_states = x.hidden_states
|
1255 |
+
|
1256 |
+
for decoder_layer in self.layers:
|
1257 |
+
if x.output_hidden_states:
|
1258 |
+
assert all_hidden_states is not None
|
1259 |
+
all_hidden_states += (hidden_states,)
|
1260 |
+
|
1261 |
+
if self.training and x.gradient_checkpointing:
|
1262 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1263 |
+
decoder_layer.__call__,
|
1264 |
+
hidden_states,
|
1265 |
+
x.attention_mask,
|
1266 |
+
x.past_states,
|
1267 |
+
x.output_attentions,
|
1268 |
+
)
|
1269 |
+
else:
|
1270 |
+
layer_outputs = decoder_layer(
|
1271 |
+
hidden_states,
|
1272 |
+
attention_mask=x.attention_mask,
|
1273 |
+
past_state=x.past_states,
|
1274 |
+
output_attentions=x.output_attentions,
|
1275 |
+
)
|
1276 |
+
|
1277 |
+
hidden_states = layer_outputs[0]
|
1278 |
+
|
1279 |
+
if x.output_attentions:
|
1280 |
+
assert layer_outputs[1] is not None
|
1281 |
+
assert all_self_attns is not None
|
1282 |
+
all_self_attns += (layer_outputs[1],)
|
1283 |
+
return DecoderOutput(hidden_states, all_hidden_states, all_self_attns)
|
1284 |
+
|
1285 |
+
|
1286 |
+
class PlamoPreTrainedModel(PreTrainedModel): # type: ignore
|
1287 |
+
config_class = PlamoConfig
|
1288 |
+
_no_split_modules: List[str]
|
1289 |
+
base_model_prefix = "model"
|
1290 |
+
supports_gradient_checkpointing = True
|
1291 |
+
_no_split_modules = ["PlamoDecoderLayer"]
|
1292 |
+
_skip_keys_device_placement = "past_key_values"
|
1293 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
1294 |
+
|
1295 |
+
def _init_weights(self, module: torch.nn.Module) -> None:
|
1296 |
+
std = 0.02
|
1297 |
+
if isinstance(module, nn.Linear):
|
1298 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1299 |
+
if module.bias is not None:
|
1300 |
+
module.bias.data.zero_()
|
1301 |
+
elif isinstance(module, nn.Embedding):
|
1302 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1303 |
+
if module.padding_idx is not None:
|
1304 |
+
module.weight.data[module.padding_idx].zero_()
|
1305 |
+
|
1306 |
+
|
1307 |
+
class PlamoModel(PlamoPreTrainedModel):
|
1308 |
+
def __init__(self, config: PlamoConfig):
|
1309 |
+
super().__init__(config)
|
1310 |
+
assert config.eval_attention_n_bit is None
|
1311 |
+
assert config.eval_mlp_n_bit is None
|
1312 |
+
|
1313 |
+
self.padding_idx = config.pad_token_id
|
1314 |
+
self.vocab_size = config.vocab_size
|
1315 |
+
|
1316 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
1317 |
+
if config.image_feature_size is not None:
|
1318 |
+
if config.image_proj_type == "mlp":
|
1319 |
+
self.image_proj = MLPImageProjector(config) # type: ignore
|
1320 |
+
elif config.image_proj_type == "linear":
|
1321 |
+
self.image_proj = nn.Linear(config.image_feature_size, config.hidden_size, bias=False) # type: ignore
|
1322 |
+
else:
|
1323 |
+
raise ValueError(f"Unknown image_proj_type: {config.image_proj_type}")
|
1324 |
+
self.layers = PlamoDecoder(config) # type: ignore
|
1325 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
1326 |
+
|
1327 |
+
self.gradient_checkpointing = False
|
1328 |
+
# Initialize weights and apply final processing
|
1329 |
+
self.post_init()
|
1330 |
+
|
1331 |
+
def get_input_embeddings(self) -> torch.nn.Embedding:
|
1332 |
+
return self.embed_tokens
|
1333 |
+
|
1334 |
+
def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
|
1335 |
+
self.embed_tokens = value
|
1336 |
+
|
1337 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
1338 |
+
def _prepare_decoder_attention_mask(
|
1339 |
+
self,
|
1340 |
+
attention_mask: torch.Tensor,
|
1341 |
+
input_shape: Tuple[int, int],
|
1342 |
+
inputs_embeds: Optional[torch.Tensor],
|
1343 |
+
past_key_values_length: int,
|
1344 |
+
) -> Optional[torch.Tensor]:
|
1345 |
+
# create causal mask
|
1346 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1347 |
+
combined_attention_mask: Optional[torch.Tensor] = None
|
1348 |
+
if input_shape[-1] > 1:
|
1349 |
+
assert inputs_embeds is not None
|
1350 |
+
combined_attention_mask = _make_causal_mask(
|
1351 |
+
input_shape,
|
1352 |
+
inputs_embeds.dtype,
|
1353 |
+
device=inputs_embeds.device,
|
1354 |
+
past_key_values_length=past_key_values_length,
|
1355 |
+
)
|
1356 |
+
input_shape = (input_shape[0], combined_attention_mask.shape[2])
|
1357 |
+
|
1358 |
+
if attention_mask is not None:
|
1359 |
+
if attention_mask.dim() == 4:
|
1360 |
+
# Custom 4D attention mask
|
1361 |
+
expanded_attn_mask = attention_mask
|
1362 |
+
else:
|
1363 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1364 |
+
assert inputs_embeds is not None
|
1365 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
1366 |
+
inputs_embeds.device
|
1367 |
+
)
|
1368 |
+
combined_attention_mask = (
|
1369 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
return combined_attention_mask
|
1373 |
+
|
1374 |
+
def forward(
|
1375 |
+
self,
|
1376 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1377 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1378 |
+
position_ids: Optional[torch.Tensor] = None,
|
1379 |
+
past_key_values: Optional[PlamoCache] = None,
|
1380 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1381 |
+
image_features: Optional[torch.Tensor] = None,
|
1382 |
+
use_cache: Optional[bool] = None,
|
1383 |
+
output_attentions: Optional[bool] = None,
|
1384 |
+
output_hidden_states: Optional[bool] = None,
|
1385 |
+
return_dict: Optional[bool] = None,
|
1386 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1387 |
+
assert input_ids is not None
|
1388 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1389 |
+
output_hidden_states = (
|
1390 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1391 |
+
)
|
1392 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1393 |
+
|
1394 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1395 |
+
|
1396 |
+
# retrieve input_ids and inputs_embeds
|
1397 |
+
if input_ids is not None and inputs_embeds is not None:
|
1398 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1399 |
+
elif input_ids is not None:
|
1400 |
+
batch_size, seq_length = input_ids.shape
|
1401 |
+
else:
|
1402 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1403 |
+
|
1404 |
+
seq_length_with_past = seq_length
|
1405 |
+
past_key_values_length = 0
|
1406 |
+
|
1407 |
+
if past_key_values is not None:
|
1408 |
+
past_key_values_length = past_key_values.get_seq_length()
|
1409 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1410 |
+
|
1411 |
+
if inputs_embeds is None:
|
1412 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1413 |
+
|
1414 |
+
if image_features is not None:
|
1415 |
+
assert self.config.image_token_id is not None
|
1416 |
+
image_embeds = self.image_proj(image_features)
|
1417 |
+
assert image_embeds.shape == inputs_embeds.shape, (image_embeds.shape, inputs_embeds.shape)
|
1418 |
+
mask = input_ids == self.config.image_token_id
|
1419 |
+
inputs_embeds[mask] = image_embeds[mask]
|
1420 |
+
|
1421 |
+
# embed positions
|
1422 |
+
require_attn_mask = False
|
1423 |
+
if not self.training or past_key_values is not None:
|
1424 |
+
require_attn_mask = True
|
1425 |
+
if seq_length_with_past >= self.config.attention_window_size:
|
1426 |
+
require_attn_mask = True
|
1427 |
+
if require_attn_mask and attention_mask is None:
|
1428 |
+
attention_mask = torch.ones(
|
1429 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
1430 |
+
)
|
1431 |
+
if attention_mask is not None:
|
1432 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
1433 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1434 |
+
)
|
1435 |
+
|
1436 |
+
hidden_states = inputs_embeds
|
1437 |
+
|
1438 |
+
if self.gradient_checkpointing and self.training:
|
1439 |
+
if use_cache:
|
1440 |
+
use_cache = False
|
1441 |
+
|
1442 |
+
if use_cache and past_key_values is None:
|
1443 |
+
past_key_values = PlamoCache(self.config)
|
1444 |
+
|
1445 |
+
# decoder layers
|
1446 |
+
out = self.layers(
|
1447 |
+
DecoderInput(
|
1448 |
+
hidden_states,
|
1449 |
+
attention_mask,
|
1450 |
+
past_key_values,
|
1451 |
+
output_hidden_states,
|
1452 |
+
output_attentions,
|
1453 |
+
self.gradient_checkpointing,
|
1454 |
+
)
|
1455 |
+
)
|
1456 |
+
assert isinstance(out, DecoderOutput)
|
1457 |
+
hidden_states = out.hidden_states
|
1458 |
+
all_hidden_states = out.all_hidden_states
|
1459 |
+
all_self_attns = out.all_self_attns
|
1460 |
+
|
1461 |
+
hidden_states = self.norm(hidden_states)
|
1462 |
+
|
1463 |
+
# add hidden states from the last decoder layer
|
1464 |
+
if output_hidden_states:
|
1465 |
+
assert all_hidden_states is not None
|
1466 |
+
all_hidden_states += (hidden_states,)
|
1467 |
+
|
1468 |
+
if not return_dict:
|
1469 |
+
return tuple(
|
1470 |
+
v for v in [hidden_states, past_key_values, all_hidden_states, all_self_attns] if v is not None
|
1471 |
+
)
|
1472 |
+
return BaseModelOutputWithPast(
|
1473 |
+
last_hidden_state=hidden_states,
|
1474 |
+
past_key_values=past_key_values,
|
1475 |
+
hidden_states=all_hidden_states,
|
1476 |
+
attentions=all_self_attns,
|
1477 |
+
)
|
1478 |
+
|
1479 |
+
|
1480 |
+
class PlamoForCausalLM(PlamoPreTrainedModel):
|
1481 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1482 |
+
|
1483 |
+
# Without this, the model cannot be loaded into a meta device.
|
1484 |
+
# Relevant code:
|
1485 |
+
# https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L4376-L4381
|
1486 |
+
# https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/modeling_utils.py#L356
|
1487 |
+
# https://github.com/pytorch/pytorch/blob/v2.4.1/torch/nn/modules/module.py#L2068
|
1488 |
+
_supports_param_buffer_assignment = False
|
1489 |
+
|
1490 |
+
def __init__(self, config: PlamoConfig) -> None:
|
1491 |
+
super().__init__(config)
|
1492 |
+
self.model = PlamoModel(config)
|
1493 |
+
|
1494 |
+
self.vocab_size = config.vocab_size
|
1495 |
+
vocab_size = ((self.vocab_size + 15) // 16) * 16
|
1496 |
+
self.lm_head: torch.nn.Module = nn.Linear(config.hidden_size, vocab_size, bias=False)
|
1497 |
+
|
1498 |
+
# Initialize weights and apply final processing
|
1499 |
+
self.post_init()
|
1500 |
+
|
1501 |
+
def get_input_embeddings(self) -> torch.nn.Embedding:
|
1502 |
+
return self.model.embed_tokens
|
1503 |
+
|
1504 |
+
def set_input_embeddings(self, value: torch.nn.Embedding) -> None:
|
1505 |
+
self.model.embed_tokens = value
|
1506 |
+
|
1507 |
+
def get_output_embeddings(self) -> torch.nn.Module:
|
1508 |
+
return self.lm_head
|
1509 |
+
|
1510 |
+
def set_output_embeddings(self, new_embeddings: torch.nn.Module) -> None:
|
1511 |
+
self.lm_head = new_embeddings
|
1512 |
+
|
1513 |
+
def set_decoder(self, decoder: PlamoModel) -> None:
|
1514 |
+
self.model = decoder
|
1515 |
+
|
1516 |
+
def get_decoder(self) -> PlamoModel:
|
1517 |
+
return self.model
|
1518 |
+
|
1519 |
+
def forward( # type: ignore
|
1520 |
+
self,
|
1521 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1522 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1523 |
+
position_ids: Optional[torch.Tensor] = None,
|
1524 |
+
past_key_values: Optional[PlamoCache] = None,
|
1525 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1526 |
+
image_features: Optional[torch.Tensor] = None,
|
1527 |
+
labels: Optional[torch.LongTensor] = None,
|
1528 |
+
use_cache: Optional[bool] = None,
|
1529 |
+
output_attentions: Optional[bool] = None,
|
1530 |
+
output_hidden_states: Optional[bool] = None,
|
1531 |
+
return_dict: Optional[bool] = None,
|
1532 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1533 |
+
r"""
|
1534 |
+
Args:
|
1535 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1536 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1537 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1538 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1539 |
+
|
1540 |
+
Returns:
|
1541 |
+
|
1542 |
+
Example:
|
1543 |
+
|
1544 |
+
```python
|
1545 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1546 |
+
|
1547 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1548 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1549 |
+
|
1550 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
1551 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1552 |
+
|
1553 |
+
>>> # Generate
|
1554 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1555 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1556 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
1557 |
+
```"""
|
1558 |
+
assert input_ids is not None
|
1559 |
+
|
1560 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1561 |
+
output_hidden_states = (
|
1562 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1563 |
+
)
|
1564 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1565 |
+
|
1566 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1567 |
+
outputs = self.model(
|
1568 |
+
input_ids=input_ids,
|
1569 |
+
attention_mask=attention_mask,
|
1570 |
+
position_ids=position_ids,
|
1571 |
+
past_key_values=past_key_values,
|
1572 |
+
inputs_embeds=inputs_embeds,
|
1573 |
+
image_features=image_features,
|
1574 |
+
use_cache=use_cache,
|
1575 |
+
output_attentions=output_attentions,
|
1576 |
+
output_hidden_states=output_hidden_states,
|
1577 |
+
return_dict=return_dict,
|
1578 |
+
)
|
1579 |
+
|
1580 |
+
hidden_states = outputs[0]
|
1581 |
+
logits = self.lm_head(hidden_states)
|
1582 |
+
logits = logits[..., : self.vocab_size]
|
1583 |
+
|
1584 |
+
loss = None
|
1585 |
+
if labels is not None:
|
1586 |
+
# Shift so that tokens < n predict n
|
1587 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1588 |
+
shift_labels = labels[..., 1:].contiguous()
|
1589 |
+
# Flatten the tokens
|
1590 |
+
loss_fct = nn.CrossEntropyLoss()
|
1591 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1592 |
+
shift_labels = shift_labels.view(-1)
|
1593 |
+
# Enable model parallelism
|
1594 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1595 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1596 |
+
|
1597 |
+
if not return_dict:
|
1598 |
+
output = (logits,) + outputs[1:]
|
1599 |
+
return (loss,) + output if loss is not None else output
|
1600 |
+
|
1601 |
+
return CausalLMOutputWithPast(
|
1602 |
+
loss=loss,
|
1603 |
+
logits=logits,
|
1604 |
+
past_key_values=outputs.past_key_values,
|
1605 |
+
hidden_states=outputs.hidden_states,
|
1606 |
+
attentions=outputs.attentions,
|
1607 |
+
)
|
1608 |
+
|
1609 |
+
def prepare_inputs_for_generation(
|
1610 |
+
self,
|
1611 |
+
input_ids: torch.Tensor,
|
1612 |
+
past_key_values: Optional[PlamoCache] = None,
|
1613 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1614 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1615 |
+
image_features: Optional[torch.Tensor] = None,
|
1616 |
+
**kwargs: Any,
|
1617 |
+
) -> Dict[str, Any]:
|
1618 |
+
if past_key_values:
|
1619 |
+
input_ids = input_ids[:, -1:]
|
1620 |
+
if image_features is not None:
|
1621 |
+
image_features = image_features[:, -1:, :]
|
1622 |
+
|
1623 |
+
position_ids = kwargs.get("position_ids", None)
|
1624 |
+
if attention_mask is not None and position_ids is None:
|
1625 |
+
# create position_ids on the fly for batch generation
|
1626 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1627 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1628 |
+
if past_key_values:
|
1629 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1630 |
+
|
1631 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1632 |
+
if inputs_embeds is not None and past_key_values is None:
|
1633 |
+
model_inputs: Dict[str, Any] = {"inputs_embeds": inputs_embeds}
|
1634 |
+
else:
|
1635 |
+
model_inputs = {"input_ids": input_ids}
|
1636 |
+
|
1637 |
+
model_inputs.update(
|
1638 |
+
{
|
1639 |
+
"position_ids": position_ids,
|
1640 |
+
"past_key_values": past_key_values,
|
1641 |
+
"use_cache": kwargs.get("use_cache"),
|
1642 |
+
"attention_mask": attention_mask,
|
1643 |
+
"image_features": image_features,
|
1644 |
+
}
|
1645 |
+
)
|
1646 |
+
return model_inputs
|
1647 |
+
|
1648 |
+
@staticmethod
|
1649 |
+
def _reorder_cache(past_key_values: PlamoCache, beam_idx: torch.Tensor) -> PlamoCache:
|
1650 |
+
past_key_values.reorder_cache(beam_idx)
|
1651 |
+
return past_key_values
|
1652 |
+
|
1653 |
+
|
1654 |
+
class MLPImageProjector(nn.Module):
|
1655 |
+
def __init__(self, config: PlamoConfig) -> None:
|
1656 |
+
super().__init__()
|
1657 |
+
self.config = config
|
1658 |
+
|
1659 |
+
assert config.image_feature_size is not None # for typing
|
1660 |
+
|
1661 |
+
# nn.LayerNorm is not supported by PFVM, so use RMSNorm + Bias instead to approximate this.
|
1662 |
+
self.norm0 = RMSNorm(config.image_feature_size, eps=config.rms_norm_eps)
|
1663 |
+
self.bias0 = Bias(config.image_feature_size)
|
1664 |
+
|
1665 |
+
# PFVM doesn't support Linear with bias, so add bias manually afterwards.
|
1666 |
+
self.linear1 = nn.Linear(config.image_feature_size, config.hidden_size, bias=False)
|
1667 |
+
self.bias1 = Bias(config.hidden_size)
|
1668 |
+
self.act1 = nn.GELU()
|
1669 |
+
|
1670 |
+
self.linear2 = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
|
1671 |
+
self.bias2 = Bias(config.hidden_size)
|
1672 |
+
|
1673 |
+
def forward(
|
1674 |
+
self,
|
1675 |
+
hidden_states: torch.Tensor,
|
1676 |
+
) -> torch.Tensor:
|
1677 |
+
hidden_states = self.norm0(hidden_states)
|
1678 |
+
hidden_states = self.bias0(hidden_states)
|
1679 |
+
|
1680 |
+
hidden_states = self.linear1(hidden_states)
|
1681 |
+
hidden_states = self.bias1(hidden_states)
|
1682 |
+
hidden_states = self.act1(hidden_states)
|
1683 |
+
|
1684 |
+
hidden_states = self.linear2(hidden_states)
|
1685 |
+
hidden_states = self.bias2(hidden_states)
|
1686 |
+
|
1687 |
+
return hidden_states
|
1688 |
+
|
1689 |
+
|
1690 |
+
class Bias(nn.Module):
|
1691 |
+
def __init__(self, num_features: int) -> None:
|
1692 |
+
super().__init__()
|
1693 |
+
self._bias = nn.Parameter(torch.zeros((num_features,)))
|
1694 |
+
|
1695 |
+
def forward(
|
1696 |
+
self,
|
1697 |
+
x: torch.Tensor,
|
1698 |
+
) -> torch.Tensor:
|
1699 |
+
return x + self._bias
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|plamo:bos|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|plamo:eos|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|plamo:pad|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<|plamo:unk|>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenization_plamo.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import Any, Optional, Tuple
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# NOTE: numba does not support type hints for njit: https://github.com/python/mypy/issues/16149
|
10 |
+
from numba import njit # type: ignore[attr-defined]
|
11 |
+
from numba.core import types
|
12 |
+
from numba.typed import Dict, List
|
13 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
14 |
+
from transformers.utils import logging
|
15 |
+
|
16 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.jsonl"}
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
INVALID_SCORE = -20000000
|
20 |
+
UNKNOWN_SCORE = -10000000
|
21 |
+
|
22 |
+
TABLE_PIECE_LENGTH = 0
|
23 |
+
TABLE_TOKEN_ID = 1
|
24 |
+
TABLE_SCORE = 2
|
25 |
+
TABLE_PIECE_ID = 3
|
26 |
+
|
27 |
+
PATH_TOKEN_LENGTH = 0
|
28 |
+
PATH_TOKEN_ID = 1
|
29 |
+
PATH_NUM_TOKENS = 2
|
30 |
+
|
31 |
+
|
32 |
+
class AhoCorasick:
|
33 |
+
def __init__(self) -> None:
|
34 |
+
# List of tokens in the vocabulary.
|
35 |
+
self._tokens: list[str]
|
36 |
+
|
37 |
+
# A mapping from a byte code point to a token ID, used for byte fallback.
|
38 |
+
self._bytes: np.ndarray
|
39 |
+
|
40 |
+
# A mapping from a suffix's piece code to a suffix ID.
|
41 |
+
#
|
42 |
+
# Typically, the Aho-Corasick algorithm builds a Trie and adds suffix links between nodes
|
43 |
+
# of the Trie. In this implementation, a suffix ID corresponds to a node in the trie, and
|
44 |
+
# a piece code to an edge (in other words, a pair of a node and the next character).
|
45 |
+
#
|
46 |
+
# A piece code is a 64-bit integer:
|
47 |
+
# - The upper 32 bits store the Unicode code point of the first character.
|
48 |
+
# - The lower 32 bits store the suffix ID of the remaining suffix.
|
49 |
+
#
|
50 |
+
# A suffix ID is an integer indicating the starting position in the _table.
|
51 |
+
self._to_suffix_id: Dict[types.int64, types.int32]
|
52 |
+
|
53 |
+
# Flattened table representing the Trie structure for the Aho-Corasick algorithm.
|
54 |
+
# It stores information including scores for each piece (prefix) within each suffix.
|
55 |
+
# It is flattened for memory efficiency and performance. Suffixes are stored in
|
56 |
+
# lexicographical order of their reversed strings, which improves memory access locality
|
57 |
+
# when exploring new characters starting from the string's end. Pieces within a suffix are
|
58 |
+
# stored in the decreasing order of their lengths.
|
59 |
+
#
|
60 |
+
# Each piece (a prefix fo the suffix) contains four pieces of information:
|
61 |
+
# - TABLE_PIECE_LENGTH: Length of the piece.
|
62 |
+
# - TABLE_TOKEN_ID: Token ID (or -1 if the piece is not a valid token).
|
63 |
+
# - TABLE_SCORE: Score (or INVALID_SCORE if the piece is not a valid token).
|
64 |
+
# - TABLE_PIECE_ID: Piece ID of the suffix.
|
65 |
+
#
|
66 |
+
# Each suffix also includes a sentinel row with a length of 1, a score of UNKNOWN_SCORE,
|
67 |
+
# and a token ID of -1. Sentinel rows are identified by the score being UNKNOWN_SCORE.
|
68 |
+
self._table: np.ndarray
|
69 |
+
|
70 |
+
def build(self, vocab: list[Any]) -> None:
|
71 |
+
self._bytes = np.zeros(256, dtype=np.int32)
|
72 |
+
self._to_suffix_id = Dict.empty(key_type=types.int64, value_type=types.int32)
|
73 |
+
|
74 |
+
# Build suffix_to_score and token_to_token_id.
|
75 |
+
# The suffix_to_score dictionary maps a suffix to its score. It also includes all suffixes
|
76 |
+
# of the token for the Trie structure for the Aho-Corasick algorithm. If a suffix is not a
|
77 |
+
# valid token, its score is set to math.nan.
|
78 |
+
# The token_to_token_id dictionary maps a token to its token ID.
|
79 |
+
suffix_to_score: dict[str, float] = {}
|
80 |
+
token_to_token_id: dict[str, int] = {}
|
81 |
+
self._tokens = []
|
82 |
+
for token_id, row in enumerate(vocab):
|
83 |
+
assert isinstance(row[0], str), row
|
84 |
+
assert isinstance(row[1], (int, float)), row
|
85 |
+
|
86 |
+
token = str(row[0])
|
87 |
+
self._tokens.append(token)
|
88 |
+
token_to_token_id[token] = token_id
|
89 |
+
|
90 |
+
# Special handling for byte tokens.
|
91 |
+
if len(row) > 2 and row[2] == "BYTE":
|
92 |
+
assert len(token) == 6 and token.startswith("<0x") and token.endswith(">"), row[0]
|
93 |
+
self._bytes[int(row[0][3:5], 16)] = token_id
|
94 |
+
continue
|
95 |
+
|
96 |
+
suffix_to_score[token] = float(row[1])
|
97 |
+
# Ensure that all suffixes are included in suffix_to_score.
|
98 |
+
for i in range(1, len(token)):
|
99 |
+
suffix_to_score[token[i:]] = suffix_to_score.get(token[i:], math.nan)
|
100 |
+
|
101 |
+
# Ensure all byte tokens are set.
|
102 |
+
for i in range(256):
|
103 |
+
assert self._bytes[i] != 0, f"Byte token for <0x{i:02X}> is not set."
|
104 |
+
|
105 |
+
# List suffixes in lexicographical order of their reversed strings.
|
106 |
+
suffixes = list(suffix_to_score.keys())
|
107 |
+
suffixes.append("")
|
108 |
+
suffixes.sort(key=lambda x: x[::-1])
|
109 |
+
|
110 |
+
# Build suffix_to_id, which is a mapping from a suffix to a suffix ID, and _to_suffix_id,
|
111 |
+
# which is a mapping from a piece code to a suffix ID.
|
112 |
+
suffix_to_id: dict[str, int] = {}
|
113 |
+
num_pieces = 0
|
114 |
+
for s in suffixes:
|
115 |
+
suffix_to_id[s] = num_pieces
|
116 |
+
if s != "":
|
117 |
+
self._to_suffix_id[ord(s[0]) << 32 | suffix_to_id[s[1:]]] = np.int32(num_pieces)
|
118 |
+
num_pieces += 1 + sum(s[:i] in suffix_to_score for i in range(1, len(s) + 1))
|
119 |
+
assert suffix_to_id[""] == 0, suffix_to_id[""]
|
120 |
+
|
121 |
+
# Build _table, which is a flattened table representing the Trie structure for the Aho-Corasick.
|
122 |
+
self._table = np.zeros((num_pieces, 4), dtype=np.int32)
|
123 |
+
i = 0
|
124 |
+
for suffix in suffixes:
|
125 |
+
# Add all prefixes of the suffix to the table.
|
126 |
+
for piece_length in range(len(suffix), 0, -1):
|
127 |
+
piece = suffix[:piece_length]
|
128 |
+
score = suffix_to_score.get(piece, None)
|
129 |
+
if score is None:
|
130 |
+
continue
|
131 |
+
self._table[i, TABLE_PIECE_LENGTH] = piece_length
|
132 |
+
self._table[i, TABLE_TOKEN_ID] = token_to_token_id.get(piece, -1)
|
133 |
+
self._table[i, TABLE_SCORE] = round(score * 1e4) if math.isfinite(score) else INVALID_SCORE
|
134 |
+
self._table[i, TABLE_PIECE_ID] = suffix_to_id[piece]
|
135 |
+
i += 1
|
136 |
+
|
137 |
+
# Add a sentinel row.
|
138 |
+
self._table[i, TABLE_PIECE_LENGTH] = 1
|
139 |
+
self._table[i, TABLE_TOKEN_ID] = -1
|
140 |
+
self._table[i, TABLE_SCORE] = UNKNOWN_SCORE
|
141 |
+
i += 1
|
142 |
+
assert i == num_pieces, (i, num_pieces)
|
143 |
+
|
144 |
+
@staticmethod
|
145 |
+
@njit
|
146 |
+
def _encode(
|
147 |
+
to_suffix_id: Dict[types.int64, types.int32],
|
148 |
+
table: np.ndarray,
|
149 |
+
bytes: np.ndarray,
|
150 |
+
data: np.ndarray,
|
151 |
+
) -> np.ndarray:
|
152 |
+
# Initialize scores array with a high value and set the score at the end to 0.
|
153 |
+
# This array keeps track of the minimum cost (best score) to encode from each position to the end.
|
154 |
+
scores = np.full((len(data) + 1,), 2**60, dtype=np.int64)
|
155 |
+
scores[-1] = 0
|
156 |
+
|
157 |
+
# Path array to store the best path information.
|
158 |
+
# The path array keeps track of token length, token ID, and number of tokens needed to encode.
|
159 |
+
path = np.zeros((len(data) + 1, 3), dtype=np.int32)
|
160 |
+
|
161 |
+
# Initialize suffix_id to 0, which represents the root of the Trie.
|
162 |
+
suffix_id = 0
|
163 |
+
|
164 |
+
# Process the input data from the end to the beginning.
|
165 |
+
for i in range(len(data) - 1, -1, -1):
|
166 |
+
c = data[i]
|
167 |
+
|
168 |
+
# Find the next suffix ID by iterating the suffix IDs of prefixes of the current suffix.
|
169 |
+
# NOTE: If no suffix ID is found, suffix_id will be set to 0.
|
170 |
+
for p in range(suffix_id, len(table)):
|
171 |
+
suffix_id = to_suffix_id.get(c << 32 | table[p, TABLE_PIECE_ID], np.int32(0))
|
172 |
+
# If a next suffix ID is found or a sentinel row is reached, break the loop.
|
173 |
+
if suffix_id > 0 or table[p, TABLE_SCORE] == UNKNOWN_SCORE:
|
174 |
+
break
|
175 |
+
|
176 |
+
# Update the best path to the current position. If multiple paths have the same score,
|
177 |
+
# this chooses the longest prefix as the best path (table is sorted in the decreasing
|
178 |
+
# order of piece length).
|
179 |
+
for p in range(suffix_id, len(table)):
|
180 |
+
score = table[p, TABLE_SCORE]
|
181 |
+
if score > INVALID_SCORE:
|
182 |
+
piece_length = table[p, TABLE_PIECE_LENGTH]
|
183 |
+
s = scores[i + piece_length] - score
|
184 |
+
if s < scores[i]:
|
185 |
+
scores[i] = s
|
186 |
+
path[i, PATH_TOKEN_LENGTH] = piece_length
|
187 |
+
path[i, PATH_TOKEN_ID] = table[p, TABLE_TOKEN_ID]
|
188 |
+
path[i, PATH_NUM_TOKENS] = path[i + piece_length, PATH_NUM_TOKENS] + 1
|
189 |
+
if score == UNKNOWN_SCORE:
|
190 |
+
# Add number of bytes to represent `c` in UTF-8 (minus 1; 1 is already
|
191 |
+
# added above).
|
192 |
+
path[i, PATH_NUM_TOKENS] += (c >= 0x80) + (c >= 0x800) + (c >= 0x10000)
|
193 |
+
|
194 |
+
# If it reaches a sentinel row, break the loop.
|
195 |
+
if score == UNKNOWN_SCORE:
|
196 |
+
break
|
197 |
+
|
198 |
+
# Decode the best path from the beginning to get the token IDs.
|
199 |
+
pos = 0
|
200 |
+
token_ids = np.zeros(path[0, PATH_NUM_TOKENS], dtype=np.int32)
|
201 |
+
token_pos = 0
|
202 |
+
while pos < len(data):
|
203 |
+
if path[pos, PATH_TOKEN_ID] >= 0:
|
204 |
+
token_ids[token_pos] = path[pos, PATH_TOKEN_ID]
|
205 |
+
token_pos += 1
|
206 |
+
else:
|
207 |
+
# Fall back to byte tokens.
|
208 |
+
c = data[pos]
|
209 |
+
s = 1 + (c >= 0x80) + (c >= 0x800) + (c >= 0x10000)
|
210 |
+
# Add byte tokens representing UTF-8 bytes.
|
211 |
+
for i in range(s):
|
212 |
+
b = c if s == 1 else (0xF00 >> s) & 0xFF if i == 0 else 0x80
|
213 |
+
token_ids[token_pos] = bytes[b | ((c >> (s - i - 1) * 6) & 0x3F)]
|
214 |
+
token_pos += 1
|
215 |
+
|
216 |
+
# Ensure that pos should increase by at least 1.
|
217 |
+
assert path[pos, PATH_TOKEN_LENGTH] > 0, (pos, path[pos])
|
218 |
+
pos += path[pos, PATH_TOKEN_LENGTH]
|
219 |
+
|
220 |
+
return token_ids
|
221 |
+
|
222 |
+
def encode(self, data: str) -> np.ndarray:
|
223 |
+
"""Encodes a string into a sequence of token IDs."""
|
224 |
+
return np.asarray(
|
225 |
+
self._encode(
|
226 |
+
self._to_suffix_id,
|
227 |
+
self._table,
|
228 |
+
self._bytes,
|
229 |
+
# Convert a string into a numpy array of Unicode code points.
|
230 |
+
# NOTE: This skips UTF-32 BOM.
|
231 |
+
np.frombuffer(data.encode("utf-32"), dtype=np.int32)[1:],
|
232 |
+
)
|
233 |
+
)
|
234 |
+
|
235 |
+
def encode_as_tokens(self, data: str) -> list[str]:
|
236 |
+
"""Encodes a string into a sequence of tokens."""
|
237 |
+
return [self._tokens[token_id] for token_id in self.encode(data)]
|
238 |
+
|
239 |
+
|
240 |
+
class PlamoTokenizer(PreTrainedTokenizer): # type: ignore
|
241 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
242 |
+
model_input_names = ["input_ids", "attention_mask"]
|
243 |
+
|
244 |
+
_save_files = [
|
245 |
+
"special_tokens_map.json",
|
246 |
+
"tokenization_plamo.py",
|
247 |
+
"tokenizer.jsonl",
|
248 |
+
"tokenizer_config.json",
|
249 |
+
]
|
250 |
+
|
251 |
+
def __init__(
|
252 |
+
self,
|
253 |
+
vocab_file: str,
|
254 |
+
unk_token: str = "<|plamo:unk|>",
|
255 |
+
bos_token: str = "<|plamo:bos|>",
|
256 |
+
eos_token: str = "<|plamo:eos|>",
|
257 |
+
pad_token: str = "<|plamo:pad|>",
|
258 |
+
cls_token: Optional[str] = None,
|
259 |
+
sep_token: Optional[str] = None,
|
260 |
+
mask_token: Optional[str] = None,
|
261 |
+
clean_up_tokenization_spaces: bool = False,
|
262 |
+
**kwargs: Any,
|
263 |
+
) -> None:
|
264 |
+
"""Tokenizer for PLaMo.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
vocab_file (str): Vocabrary file path.
|
268 |
+
unk_token (str): Unknown token.
|
269 |
+
bos_token (str): Beginning of sentence token.
|
270 |
+
eos_token (str): End of sentence token.
|
271 |
+
pad_token (str): Padding token.
|
272 |
+
cls_token (str):
|
273 |
+
Classification token, to extract a summary of an input sequence leveraging self-attention along the
|
274 |
+
full depth of the model.
|
275 |
+
sep_token (str): Separation token, to separate context and query in an input sequence.
|
276 |
+
mask_token (str): Mask token, to use when training a model with masked-language modeling.
|
277 |
+
clean_up_tokenization_spaces (bool): Whether or not to clean up the tokenization spaces.
|
278 |
+
num_threads (int):
|
279 |
+
Number of threads. This value will be ignored if one of `PLAMO_TOKENIZER_NUM_THREADS` or
|
280 |
+
`RAYON_NUM_THREADS` is set as an environment variable.
|
281 |
+
"""
|
282 |
+
if "add_bos_token" not in kwargs:
|
283 |
+
kwargs["add_bos_token"] = False
|
284 |
+
if "add_eos_token" not in kwargs:
|
285 |
+
kwargs["add_eos_token"] = False
|
286 |
+
self.data: list[Any] = [json.loads(line) for line in open(vocab_file, "r", encoding="utf-8")]
|
287 |
+
self.vocab: dict[str, int] = {v[0]: i for i, v in enumerate(self.data)}
|
288 |
+
self.aho_corasick = AhoCorasick()
|
289 |
+
self.aho_corasick.build(self.data)
|
290 |
+
self.vocab_file = vocab_file
|
291 |
+
self.add_bos_token = kwargs["add_bos_token"]
|
292 |
+
self.add_eos_token = kwargs["add_eos_token"]
|
293 |
+
|
294 |
+
super().__init__(
|
295 |
+
vocab_file=vocab_file,
|
296 |
+
unk_token=unk_token,
|
297 |
+
bos_token=bos_token,
|
298 |
+
eos_token=eos_token,
|
299 |
+
pad_token=pad_token,
|
300 |
+
cls_token=cls_token,
|
301 |
+
sep_token=sep_token,
|
302 |
+
mask_token=mask_token,
|
303 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
304 |
+
**kwargs,
|
305 |
+
)
|
306 |
+
|
307 |
+
# the functions below are copied from hf transformers LlamaTokenizer's implementation to fix the behaviour of the tokenizer
|
308 |
+
# https://github.com/huggingface/transformers/blob/v4.30.2/src/transformers/models/llama/tokenization_llama.py
|
309 |
+
|
310 |
+
def __getstate__(self) -> dict[str, Any]:
|
311 |
+
state = self.__dict__.copy()
|
312 |
+
state["aho_corasick"] = None
|
313 |
+
return state
|
314 |
+
|
315 |
+
def __setstate__(self, d: dict[str, Any]) -> None:
|
316 |
+
self.__dict__ = d
|
317 |
+
self.aho_corasick = AhoCorasick()
|
318 |
+
self.aho_corasick.build(self.data)
|
319 |
+
|
320 |
+
@property
|
321 |
+
def vocab_size(self) -> Any:
|
322 |
+
"""Returns vocab size"""
|
323 |
+
return len(self.data)
|
324 |
+
|
325 |
+
def token_to_score(self, token: str) -> Optional[float]:
|
326 |
+
"""Returns score of the token"""
|
327 |
+
token_id = self.vocab.get(token, None)
|
328 |
+
return None if token_id is None else self.data[token_id][1]
|
329 |
+
|
330 |
+
def get_vocab(self) -> dict[str, int]:
|
331 |
+
"""Returns vocab as a dict"""
|
332 |
+
vocab = self.vocab.copy()
|
333 |
+
vocab.update(self.added_tokens_encoder)
|
334 |
+
return vocab
|
335 |
+
|
336 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
337 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
338 |
+
return b"".join(
|
339 |
+
[bytes([int(t[3:5], 16)]) if t.startswith("<0x") else t.encode("utf-8") for t in tokens]
|
340 |
+
).decode("utf-8", errors="replace")
|
341 |
+
|
342 |
+
def _tokenize(self, text: str) -> Any:
|
343 |
+
"""Returns a tokenized string."""
|
344 |
+
return self.aho_corasick.encode_as_tokens(text)
|
345 |
+
|
346 |
+
def _convert_token_to_id(self, token: str) -> Any:
|
347 |
+
"""Converts a token (str) in an id using the vocab."""
|
348 |
+
return self.vocab.get(token, 0)
|
349 |
+
|
350 |
+
def _convert_id_to_token(self, index: int) -> Any:
|
351 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
352 |
+
return self.data[index][0]
|
353 |
+
|
354 |
+
def build_inputs_with_special_tokens(
|
355 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
356 |
+
) -> List[int]:
|
357 |
+
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
358 |
+
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
359 |
+
|
360 |
+
output = bos_token_id + token_ids_0 + eos_token_id
|
361 |
+
|
362 |
+
if token_ids_1 is not None:
|
363 |
+
output = output + bos_token_id + token_ids_1 + eos_token_id
|
364 |
+
|
365 |
+
return output
|
366 |
+
|
367 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
368 |
+
"""
|
369 |
+
Save the vocabulary and special tokens file to a directory.
|
370 |
+
|
371 |
+
Args:
|
372 |
+
save_directory (`str`):
|
373 |
+
The directory in which to save the vocabulary.
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
`Tuple(str)`: Paths to the files saved.
|
377 |
+
"""
|
378 |
+
if not os.path.isdir(save_directory):
|
379 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
380 |
+
return ("",)
|
381 |
+
out_vocab_file = os.path.join(
|
382 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
383 |
+
)
|
384 |
+
|
385 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
386 |
+
copyfile(self.vocab_file, out_vocab_file)
|
387 |
+
elif not os.path.isfile(self.vocab_file):
|
388 |
+
with open(out_vocab_file, "w") as f:
|
389 |
+
for token in self.data:
|
390 |
+
print(json.dumps(token, ensure_ascii=False), file=f)
|
391 |
+
|
392 |
+
return (out_vocab_file,)
|
tokenizer.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<|plamo:unk|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<|plamo:bos|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "<|plamo:eos|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"3": {
|
30 |
+
"content": "<|plamo:pad|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"auto_map": {
|
39 |
+
"AutoTokenizer": [
|
40 |
+
"tokenization_plamo.PlamoTokenizer",
|
41 |
+
null
|
42 |
+
]
|
43 |
+
},
|
44 |
+
"bos_token": "<|plamo:bos|>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": null,
|
47 |
+
"eos_token": "<|plamo:eos|>",
|
48 |
+
"local_file_only": true,
|
49 |
+
"mask_token": null,
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "<|plamo:pad|>",
|
52 |
+
"sep_token": null,
|
53 |
+
"tokenizer_class": "PlamoTokenizer",
|
54 |
+
"unk_token": "<|plamo:unk|>"
|
55 |
+
}
|