katopz's picture
Upload folder using huggingface_hub
576fdf3 verified
metadata
language:
  - multilingual
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - br
  - bs
  - ca
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - he
  - hi
  - hr
  - hu
  - hy
  - id
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lo
  - lt
  - lv
  - mg
  - mk
  - ml
  - mn
  - mr
  - ms
  - my
  - ne
  - nl
  - 'no'
  - om
  - or
  - pa
  - pl
  - ps
  - pt
  - ro
  - ru
  - sa
  - sd
  - si
  - sk
  - sl
  - so
  - sq
  - sr
  - su
  - sv
  - sw
  - ta
  - te
  - th
  - tl
  - tr
  - ug
  - uk
  - ur
  - uz
  - vi
  - xh
  - yi
  - zh
license: mit
tags:
  - mteb
  - Sentence Transformers
  - sentence-similarity
  - sentence-transformers
  - mlx
model-index:
  - name: multilingual-e5-base
    results:
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en)
          type: mteb/amazon_counterfactual
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 78.97014925373135
          - type: ap
            value: 43.69351129103008
          - type: f1
            value: 73.38075030070492
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (de)
          type: mteb/amazon_counterfactual
          config: de
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 71.7237687366167
          - type: ap
            value: 82.22089859962671
          - type: f1
            value: 69.95532758884401
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en-ext)
          type: mteb/amazon_counterfactual
          config: en-ext
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 79.65517241379312
          - type: ap
            value: 28.507918657094738
          - type: f1
            value: 66.84516013726119
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (ja)
          type: mteb/amazon_counterfactual
          config: ja
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 73.32976445396146
          - type: ap
            value: 20.720481637566014
          - type: f1
            value: 59.78002763416003
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonPolarityClassification
          type: mteb/amazon_polarity
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 90.63775
          - type: ap
            value: 87.22277903861716
          - type: f1
            value: 90.60378636386807
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (en)
          type: mteb/amazon_reviews_multi
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 44.546
          - type: f1
            value: 44.05666638370923
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (de)
          type: mteb/amazon_reviews_multi
          config: de
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 41.828
          - type: f1
            value: 41.2710255644252
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (es)
          type: mteb/amazon_reviews_multi
          config: es
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 40.534
          - type: f1
            value: 39.820743174270326
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (fr)
          type: mteb/amazon_reviews_multi
          config: fr
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 39.684
          - type: f1
            value: 39.11052682815307
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (ja)
          type: mteb/amazon_reviews_multi
          config: ja
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 37.436
          - type: f1
            value: 37.07082931930871
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (zh)
          type: mteb/amazon_reviews_multi
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 37.226000000000006
          - type: f1
            value: 36.65372077739185
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.831000000000003
          - type: map_at_10
            value: 36.42
          - type: map_at_100
            value: 37.699
          - type: map_at_1000
            value: 37.724000000000004
          - type: map_at_3
            value: 32.207
          - type: map_at_5
            value: 34.312
          - type: mrr_at_1
            value: 23.257
          - type: mrr_at_10
            value: 36.574
          - type: mrr_at_100
            value: 37.854
          - type: mrr_at_1000
            value: 37.878
          - type: mrr_at_3
            value: 32.385000000000005
          - type: mrr_at_5
            value: 34.48
          - type: ndcg_at_1
            value: 22.831000000000003
          - type: ndcg_at_10
            value: 44.230000000000004
          - type: ndcg_at_100
            value: 49.974000000000004
          - type: ndcg_at_1000
            value: 50.522999999999996
          - type: ndcg_at_3
            value: 35.363
          - type: ndcg_at_5
            value: 39.164
          - type: precision_at_1
            value: 22.831000000000003
          - type: precision_at_10
            value: 6.935
          - type: precision_at_100
            value: 0.9520000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 14.841
          - type: precision_at_5
            value: 10.754
          - type: recall_at_1
            value: 22.831000000000003
          - type: recall_at_10
            value: 69.346
          - type: recall_at_100
            value: 95.235
          - type: recall_at_1000
            value: 99.36
          - type: recall_at_3
            value: 44.523
          - type: recall_at_5
            value: 53.769999999999996
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringP2P
          type: mteb/arxiv-clustering-p2p
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 40.27789869854063
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringS2S
          type: mteb/arxiv-clustering-s2s
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 35.41979463347428
      - task:
          type: Reranking
        dataset:
          name: MTEB AskUbuntuDupQuestions
          type: mteb/askubuntudupquestions-reranking
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 58.22752045109304
          - type: mrr
            value: 71.51112430198303
      - task:
          type: STS
        dataset:
          name: MTEB BIOSSES
          type: mteb/biosses-sts
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 84.71147646622866
          - type: cos_sim_spearman
            value: 85.059167046486
          - type: euclidean_pearson
            value: 75.88421613600647
          - type: euclidean_spearman
            value: 75.12821787150585
          - type: manhattan_pearson
            value: 75.22005646957604
          - type: manhattan_spearman
            value: 74.42880434453272
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (de-en)
          type: mteb/bucc-bitext-mining
          config: de-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 99.23799582463465
          - type: f1
            value: 99.12665274878218
          - type: precision
            value: 99.07098121085595
          - type: recall
            value: 99.23799582463465
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (fr-en)
          type: mteb/bucc-bitext-mining
          config: fr-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 97.88685890380806
          - type: f1
            value: 97.59336708489249
          - type: precision
            value: 97.44662117543473
          - type: recall
            value: 97.88685890380806
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (ru-en)
          type: mteb/bucc-bitext-mining
          config: ru-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 97.47142362313821
          - type: f1
            value: 97.1989377670015
          - type: precision
            value: 97.06384944001847
          - type: recall
            value: 97.47142362313821
      - task:
          type: BitextMining
        dataset:
          name: MTEB BUCC (zh-en)
          type: mteb/bucc-bitext-mining
          config: zh-en
          split: test
          revision: d51519689f32196a32af33b075a01d0e7c51e252
        metrics:
          - type: accuracy
            value: 98.4728804634018
          - type: f1
            value: 98.2973494821836
          - type: precision
            value: 98.2095839915745
          - type: recall
            value: 98.4728804634018
      - task:
          type: Classification
        dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 82.74025974025975
          - type: f1
            value: 82.67420447730439
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringP2P
          type: mteb/biorxiv-clustering-p2p
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 35.0380848063507
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringS2S
          type: mteb/biorxiv-clustering-s2s
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 29.45956405670166
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackAndroidRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.122
          - type: map_at_10
            value: 42.03
          - type: map_at_100
            value: 43.364000000000004
          - type: map_at_1000
            value: 43.474000000000004
          - type: map_at_3
            value: 38.804
          - type: map_at_5
            value: 40.585
          - type: mrr_at_1
            value: 39.914
          - type: mrr_at_10
            value: 48.227
          - type: mrr_at_100
            value: 49.018
          - type: mrr_at_1000
            value: 49.064
          - type: mrr_at_3
            value: 45.994
          - type: mrr_at_5
            value: 47.396
          - type: ndcg_at_1
            value: 39.914
          - type: ndcg_at_10
            value: 47.825
          - type: ndcg_at_100
            value: 52.852
          - type: ndcg_at_1000
            value: 54.891
          - type: ndcg_at_3
            value: 43.517
          - type: ndcg_at_5
            value: 45.493
          - type: precision_at_1
            value: 39.914
          - type: precision_at_10
            value: 8.956
          - type: precision_at_100
            value: 1.388
          - type: precision_at_1000
            value: 0.182
          - type: precision_at_3
            value: 20.791999999999998
          - type: precision_at_5
            value: 14.821000000000002
          - type: recall_at_1
            value: 32.122
          - type: recall_at_10
            value: 58.294999999999995
          - type: recall_at_100
            value: 79.726
          - type: recall_at_1000
            value: 93.099
          - type: recall_at_3
            value: 45.017
          - type: recall_at_5
            value: 51.002
          - type: map_at_1
            value: 29.677999999999997
          - type: map_at_10
            value: 38.684000000000005
          - type: map_at_100
            value: 39.812999999999995
          - type: map_at_1000
            value: 39.945
          - type: map_at_3
            value: 35.831
          - type: map_at_5
            value: 37.446
          - type: mrr_at_1
            value: 37.771
          - type: mrr_at_10
            value: 44.936
          - type: mrr_at_100
            value: 45.583
          - type: mrr_at_1000
            value: 45.634
          - type: mrr_at_3
            value: 42.771
          - type: mrr_at_5
            value: 43.994
          - type: ndcg_at_1
            value: 37.771
          - type: ndcg_at_10
            value: 44.059
          - type: ndcg_at_100
            value: 48.192
          - type: ndcg_at_1000
            value: 50.375
          - type: ndcg_at_3
            value: 40.172000000000004
          - type: ndcg_at_5
            value: 41.899
          - type: precision_at_1
            value: 37.771
          - type: precision_at_10
            value: 8.286999999999999
          - type: precision_at_100
            value: 1.322
          - type: precision_at_1000
            value: 0.178
          - type: precision_at_3
            value: 19.406000000000002
          - type: precision_at_5
            value: 13.745
          - type: recall_at_1
            value: 29.677999999999997
          - type: recall_at_10
            value: 53.071
          - type: recall_at_100
            value: 70.812
          - type: recall_at_1000
            value: 84.841
          - type: recall_at_3
            value: 41.016000000000005
          - type: recall_at_5
            value: 46.22
          - type: map_at_1
            value: 42.675000000000004
          - type: map_at_10
            value: 53.93599999999999
          - type: map_at_100
            value: 54.806999999999995
          - type: map_at_1000
            value: 54.867
          - type: map_at_3
            value: 50.934000000000005
          - type: map_at_5
            value: 52.583
          - type: mrr_at_1
            value: 48.339
          - type: mrr_at_10
            value: 57.265
          - type: mrr_at_100
            value: 57.873
          - type: mrr_at_1000
            value: 57.906
          - type: mrr_at_3
            value: 55.193000000000005
          - type: mrr_at_5
            value: 56.303000000000004
          - type: ndcg_at_1
            value: 48.339
          - type: ndcg_at_10
            value: 59.19799999999999
          - type: ndcg_at_100
            value: 62.743
          - type: ndcg_at_1000
            value: 63.99399999999999
          - type: ndcg_at_3
            value: 54.367
          - type: ndcg_at_5
            value: 56.548
          - type: precision_at_1
            value: 48.339
          - type: precision_at_10
            value: 9.216000000000001
          - type: precision_at_100
            value: 1.1809999999999998
          - type: precision_at_1000
            value: 0.134
          - type: precision_at_3
            value: 23.72
          - type: precision_at_5
            value: 16.025
          - type: recall_at_1
            value: 42.675000000000004
          - type: recall_at_10
            value: 71.437
          - type: recall_at_100
            value: 86.803
          - type: recall_at_1000
            value: 95.581
          - type: recall_at_3
            value: 58.434
          - type: recall_at_5
            value: 63.754
          - type: map_at_1
            value: 23.518
          - type: map_at_10
            value: 30.648999999999997
          - type: map_at_100
            value: 31.508999999999997
          - type: map_at_1000
            value: 31.604
          - type: map_at_3
            value: 28.247
          - type: map_at_5
            value: 29.65
          - type: mrr_at_1
            value: 25.650000000000002
          - type: mrr_at_10
            value: 32.771
          - type: mrr_at_100
            value: 33.554
          - type: mrr_at_1000
            value: 33.629999999999995
          - type: mrr_at_3
            value: 30.433
          - type: mrr_at_5
            value: 31.812
          - type: ndcg_at_1
            value: 25.650000000000002
          - type: ndcg_at_10
            value: 34.929
          - type: ndcg_at_100
            value: 39.382
          - type: ndcg_at_1000
            value: 41.913
          - type: ndcg_at_3
            value: 30.292
          - type: ndcg_at_5
            value: 32.629999999999995
          - type: precision_at_1
            value: 25.650000000000002
          - type: precision_at_10
            value: 5.311
          - type: precision_at_100
            value: 0.792
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 12.58
          - type: precision_at_5
            value: 8.994
          - type: recall_at_1
            value: 23.518
          - type: recall_at_10
            value: 46.19
          - type: recall_at_100
            value: 67.123
          - type: recall_at_1000
            value: 86.442
          - type: recall_at_3
            value: 33.678000000000004
          - type: recall_at_5
            value: 39.244
          - type: map_at_1
            value: 15.891
          - type: map_at_10
            value: 22.464000000000002
          - type: map_at_100
            value: 23.483
          - type: map_at_1000
            value: 23.613
          - type: map_at_3
            value: 20.080000000000002
          - type: map_at_5
            value: 21.526
          - type: mrr_at_1
            value: 20.025000000000002
          - type: mrr_at_10
            value: 26.712999999999997
          - type: mrr_at_100
            value: 27.650000000000002
          - type: mrr_at_1000
            value: 27.737000000000002
          - type: mrr_at_3
            value: 24.274
          - type: mrr_at_5
            value: 25.711000000000002
          - type: ndcg_at_1
            value: 20.025000000000002
          - type: ndcg_at_10
            value: 27.028999999999996
          - type: ndcg_at_100
            value: 32.064
          - type: ndcg_at_1000
            value: 35.188
          - type: ndcg_at_3
            value: 22.512999999999998
          - type: ndcg_at_5
            value: 24.89
          - type: precision_at_1
            value: 20.025000000000002
          - type: precision_at_10
            value: 4.776
          - type: precision_at_100
            value: 0.8500000000000001
          - type: precision_at_1000
            value: 0.125
          - type: precision_at_3
            value: 10.531
          - type: precision_at_5
            value: 7.811
          - type: recall_at_1
            value: 15.891
          - type: recall_at_10
            value: 37.261
          - type: recall_at_100
            value: 59.12
          - type: recall_at_1000
            value: 81.356
          - type: recall_at_3
            value: 24.741
          - type: recall_at_5
            value: 30.753999999999998
          - type: map_at_1
            value: 27.544
          - type: map_at_10
            value: 36.283
          - type: map_at_100
            value: 37.467
          - type: map_at_1000
            value: 37.574000000000005
          - type: map_at_3
            value: 33.528999999999996
          - type: map_at_5
            value: 35.028999999999996
          - type: mrr_at_1
            value: 34.166999999999994
          - type: mrr_at_10
            value: 41.866
          - type: mrr_at_100
            value: 42.666
          - type: mrr_at_1000
            value: 42.716
          - type: mrr_at_3
            value: 39.541
          - type: mrr_at_5
            value: 40.768
          - type: ndcg_at_1
            value: 34.166999999999994
          - type: ndcg_at_10
            value: 41.577
          - type: ndcg_at_100
            value: 46.687
          - type: ndcg_at_1000
            value: 48.967
          - type: ndcg_at_3
            value: 37.177
          - type: ndcg_at_5
            value: 39.097
          - type: precision_at_1
            value: 34.166999999999994
          - type: precision_at_10
            value: 7.420999999999999
          - type: precision_at_100
            value: 1.165
          - type: precision_at_1000
            value: 0.154
          - type: precision_at_3
            value: 17.291999999999998
          - type: precision_at_5
            value: 12.166
          - type: recall_at_1
            value: 27.544
          - type: recall_at_10
            value: 51.99399999999999
          - type: recall_at_100
            value: 73.738
          - type: recall_at_1000
            value: 89.33
          - type: recall_at_3
            value: 39.179
          - type: recall_at_5
            value: 44.385999999999996
          - type: map_at_1
            value: 26.661
          - type: map_at_10
            value: 35.475
          - type: map_at_100
            value: 36.626999999999995
          - type: map_at_1000
            value: 36.741
          - type: map_at_3
            value: 32.818000000000005
          - type: map_at_5
            value: 34.397
          - type: mrr_at_1
            value: 32.647999999999996
          - type: mrr_at_10
            value: 40.784
          - type: mrr_at_100
            value: 41.602
          - type: mrr_at_1000
            value: 41.661
          - type: mrr_at_3
            value: 38.68
          - type: mrr_at_5
            value: 39.838
          - type: ndcg_at_1
            value: 32.647999999999996
          - type: ndcg_at_10
            value: 40.697
          - type: ndcg_at_100
            value: 45.799
          - type: ndcg_at_1000
            value: 48.235
          - type: ndcg_at_3
            value: 36.516
          - type: ndcg_at_5
            value: 38.515
          - type: precision_at_1
            value: 32.647999999999996
          - type: precision_at_10
            value: 7.202999999999999
          - type: precision_at_100
            value: 1.1360000000000001
          - type: precision_at_1000
            value: 0.151
          - type: precision_at_3
            value: 17.314
          - type: precision_at_5
            value: 12.145999999999999
          - type: recall_at_1
            value: 26.661
          - type: recall_at_10
            value: 50.995000000000005
          - type: recall_at_100
            value: 73.065
          - type: recall_at_1000
            value: 89.781
          - type: recall_at_3
            value: 39.073
          - type: recall_at_5
            value: 44.395
          - type: map_at_1
            value: 25.946583333333333
          - type: map_at_10
            value: 33.79725
          - type: map_at_100
            value: 34.86408333333333
          - type: map_at_1000
            value: 34.9795
          - type: map_at_3
            value: 31.259999999999998
          - type: map_at_5
            value: 32.71541666666666
          - type: mrr_at_1
            value: 30.863749999999996
          - type: mrr_at_10
            value: 37.99183333333333
          - type: mrr_at_100
            value: 38.790499999999994
          - type: mrr_at_1000
            value: 38.85575000000001
          - type: mrr_at_3
            value: 35.82083333333333
          - type: mrr_at_5
            value: 37.07533333333333
          - type: ndcg_at_1
            value: 30.863749999999996
          - type: ndcg_at_10
            value: 38.52141666666667
          - type: ndcg_at_100
            value: 43.17966666666667
          - type: ndcg_at_1000
            value: 45.64608333333333
          - type: ndcg_at_3
            value: 34.333000000000006
          - type: ndcg_at_5
            value: 36.34975
          - type: precision_at_1
            value: 30.863749999999996
          - type: precision_at_10
            value: 6.598999999999999
          - type: precision_at_100
            value: 1.0502500000000001
          - type: precision_at_1000
            value: 0.14400000000000002
          - type: precision_at_3
            value: 15.557583333333334
          - type: precision_at_5
            value: 11.020000000000001
          - type: recall_at_1
            value: 25.946583333333333
          - type: recall_at_10
            value: 48.36991666666666
          - type: recall_at_100
            value: 69.02408333333334
          - type: recall_at_1000
            value: 86.43858333333331
          - type: recall_at_3
            value: 36.4965
          - type: recall_at_5
            value: 41.76258333333334
          - type: map_at_1
            value: 22.431
          - type: map_at_10
            value: 28.889
          - type: map_at_100
            value: 29.642000000000003
          - type: map_at_1000
            value: 29.742
          - type: map_at_3
            value: 26.998
          - type: map_at_5
            value: 28.172000000000004
          - type: mrr_at_1
            value: 25.307000000000002
          - type: mrr_at_10
            value: 31.763
          - type: mrr_at_100
            value: 32.443
          - type: mrr_at_1000
            value: 32.531
          - type: mrr_at_3
            value: 29.959000000000003
          - type: mrr_at_5
            value: 31.063000000000002
          - type: ndcg_at_1
            value: 25.307000000000002
          - type: ndcg_at_10
            value: 32.586999999999996
          - type: ndcg_at_100
            value: 36.5
          - type: ndcg_at_1000
            value: 39.133
          - type: ndcg_at_3
            value: 29.25
          - type: ndcg_at_5
            value: 31.023
          - type: precision_at_1
            value: 25.307000000000002
          - type: precision_at_10
            value: 4.954
          - type: precision_at_100
            value: 0.747
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 12.577
          - type: precision_at_5
            value: 8.741999999999999
          - type: recall_at_1
            value: 22.431
          - type: recall_at_10
            value: 41.134
          - type: recall_at_100
            value: 59.28600000000001
          - type: recall_at_1000
            value: 78.857
          - type: recall_at_3
            value: 31.926
          - type: recall_at_5
            value: 36.335
          - type: map_at_1
            value: 17.586
          - type: map_at_10
            value: 23.304
          - type: map_at_100
            value: 24.159
          - type: map_at_1000
            value: 24.281
          - type: map_at_3
            value: 21.316
          - type: map_at_5
            value: 22.383
          - type: mrr_at_1
            value: 21.645
          - type: mrr_at_10
            value: 27.365000000000002
          - type: mrr_at_100
            value: 28.108
          - type: mrr_at_1000
            value: 28.192
          - type: mrr_at_3
            value: 25.482
          - type: mrr_at_5
            value: 26.479999999999997
          - type: ndcg_at_1
            value: 21.645
          - type: ndcg_at_10
            value: 27.306
          - type: ndcg_at_100
            value: 31.496000000000002
          - type: ndcg_at_1000
            value: 34.53
          - type: ndcg_at_3
            value: 23.73
          - type: ndcg_at_5
            value: 25.294
          - type: precision_at_1
            value: 21.645
          - type: precision_at_10
            value: 4.797
          - type: precision_at_100
            value: 0.8059999999999999
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 10.850999999999999
          - type: precision_at_5
            value: 7.736
          - type: recall_at_1
            value: 17.586
          - type: recall_at_10
            value: 35.481
          - type: recall_at_100
            value: 54.534000000000006
          - type: recall_at_1000
            value: 76.456
          - type: recall_at_3
            value: 25.335
          - type: recall_at_5
            value: 29.473
          - type: map_at_1
            value: 25.095
          - type: map_at_10
            value: 32.374
          - type: map_at_100
            value: 33.537
          - type: map_at_1000
            value: 33.634
          - type: map_at_3
            value: 30.089
          - type: map_at_5
            value: 31.433
          - type: mrr_at_1
            value: 29.198
          - type: mrr_at_10
            value: 36.01
          - type: mrr_at_100
            value: 37.022
          - type: mrr_at_1000
            value: 37.083
          - type: mrr_at_3
            value: 33.94
          - type: mrr_at_5
            value: 35.148
          - type: ndcg_at_1
            value: 29.198
          - type: ndcg_at_10
            value: 36.729
          - type: ndcg_at_100
            value: 42.114000000000004
          - type: ndcg_at_1000
            value: 44.592
          - type: ndcg_at_3
            value: 32.644
          - type: ndcg_at_5
            value: 34.652
          - type: precision_at_1
            value: 29.198
          - type: precision_at_10
            value: 5.970000000000001
          - type: precision_at_100
            value: 0.967
          - type: precision_at_1000
            value: 0.129
          - type: precision_at_3
            value: 14.396999999999998
          - type: precision_at_5
            value: 10.093
          - type: recall_at_1
            value: 25.095
          - type: recall_at_10
            value: 46.392
          - type: recall_at_100
            value: 69.706
          - type: recall_at_1000
            value: 87.738
          - type: recall_at_3
            value: 35.303000000000004
          - type: recall_at_5
            value: 40.441
          - type: map_at_1
            value: 26.857999999999997
          - type: map_at_10
            value: 34.066
          - type: map_at_100
            value: 35.671
          - type: map_at_1000
            value: 35.881
          - type: map_at_3
            value: 31.304
          - type: map_at_5
            value: 32.885
          - type: mrr_at_1
            value: 32.411
          - type: mrr_at_10
            value: 38.987
          - type: mrr_at_100
            value: 39.894
          - type: mrr_at_1000
            value: 39.959
          - type: mrr_at_3
            value: 36.626999999999995
          - type: mrr_at_5
            value: 38.011
          - type: ndcg_at_1
            value: 32.411
          - type: ndcg_at_10
            value: 39.208
          - type: ndcg_at_100
            value: 44.626
          - type: ndcg_at_1000
            value: 47.43
          - type: ndcg_at_3
            value: 35.091
          - type: ndcg_at_5
            value: 37.119
          - type: precision_at_1
            value: 32.411
          - type: precision_at_10
            value: 7.51
          - type: precision_at_100
            value: 1.486
          - type: precision_at_1000
            value: 0.234
          - type: precision_at_3
            value: 16.14
          - type: precision_at_5
            value: 11.976
          - type: recall_at_1
            value: 26.857999999999997
          - type: recall_at_10
            value: 47.407
          - type: recall_at_100
            value: 72.236
          - type: recall_at_1000
            value: 90.77
          - type: recall_at_3
            value: 35.125
          - type: recall_at_5
            value: 40.522999999999996
          - type: map_at_1
            value: 21.3
          - type: map_at_10
            value: 27.412999999999997
          - type: map_at_100
            value: 28.29
          - type: map_at_1000
            value: 28.398
          - type: map_at_3
            value: 25.169999999999998
          - type: map_at_5
            value: 26.496
          - type: mrr_at_1
            value: 23.29
          - type: mrr_at_10
            value: 29.215000000000003
          - type: mrr_at_100
            value: 30.073
          - type: mrr_at_1000
            value: 30.156
          - type: mrr_at_3
            value: 26.956000000000003
          - type: mrr_at_5
            value: 28.38
          - type: ndcg_at_1
            value: 23.29
          - type: ndcg_at_10
            value: 31.113000000000003
          - type: ndcg_at_100
            value: 35.701
          - type: ndcg_at_1000
            value: 38.505
          - type: ndcg_at_3
            value: 26.727
          - type: ndcg_at_5
            value: 29.037000000000003
          - type: precision_at_1
            value: 23.29
          - type: precision_at_10
            value: 4.787
          - type: precision_at_100
            value: 0.763
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 11.091
          - type: precision_at_5
            value: 7.985
          - type: recall_at_1
            value: 21.3
          - type: recall_at_10
            value: 40.782000000000004
          - type: recall_at_100
            value: 62.13999999999999
          - type: recall_at_1000
            value: 83.012
          - type: recall_at_3
            value: 29.131
          - type: recall_at_5
            value: 34.624
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.631
          - type: map_at_10
            value: 16.634999999999998
          - type: map_at_100
            value: 18.23
          - type: map_at_1000
            value: 18.419
          - type: map_at_3
            value: 13.66
          - type: map_at_5
            value: 15.173
          - type: mrr_at_1
            value: 21.368000000000002
          - type: mrr_at_10
            value: 31.56
          - type: mrr_at_100
            value: 32.58
          - type: mrr_at_1000
            value: 32.633
          - type: mrr_at_3
            value: 28.241
          - type: mrr_at_5
            value: 30.225
          - type: ndcg_at_1
            value: 21.368000000000002
          - type: ndcg_at_10
            value: 23.855999999999998
          - type: ndcg_at_100
            value: 30.686999999999998
          - type: ndcg_at_1000
            value: 34.327000000000005
          - type: ndcg_at_3
            value: 18.781
          - type: ndcg_at_5
            value: 20.73
          - type: precision_at_1
            value: 21.368000000000002
          - type: precision_at_10
            value: 7.564
          - type: precision_at_100
            value: 1.496
          - type: precision_at_1000
            value: 0.217
          - type: precision_at_3
            value: 13.876
          - type: precision_at_5
            value: 11.062
          - type: recall_at_1
            value: 9.631
          - type: recall_at_10
            value: 29.517
          - type: recall_at_100
            value: 53.452
          - type: recall_at_1000
            value: 74.115
          - type: recall_at_3
            value: 17.605999999999998
          - type: recall_at_5
            value: 22.505
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: dbpedia-entity
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 8.885
          - type: map_at_10
            value: 18.798000000000002
          - type: map_at_100
            value: 26.316
          - type: map_at_1000
            value: 27.869
          - type: map_at_3
            value: 13.719000000000001
          - type: map_at_5
            value: 15.716
          - type: mrr_at_1
            value: 66
          - type: mrr_at_10
            value: 74.263
          - type: mrr_at_100
            value: 74.519
          - type: mrr_at_1000
            value: 74.531
          - type: mrr_at_3
            value: 72.458
          - type: mrr_at_5
            value: 73.321
          - type: ndcg_at_1
            value: 53.87499999999999
          - type: ndcg_at_10
            value: 40.355999999999995
          - type: ndcg_at_100
            value: 44.366
          - type: ndcg_at_1000
            value: 51.771
          - type: ndcg_at_3
            value: 45.195
          - type: ndcg_at_5
            value: 42.187000000000005
          - type: precision_at_1
            value: 66
          - type: precision_at_10
            value: 31.75
          - type: precision_at_100
            value: 10.11
          - type: precision_at_1000
            value: 1.9800000000000002
          - type: precision_at_3
            value: 48.167
          - type: precision_at_5
            value: 40.050000000000004
          - type: recall_at_1
            value: 8.885
          - type: recall_at_10
            value: 24.471999999999998
          - type: recall_at_100
            value: 49.669000000000004
          - type: recall_at_1000
            value: 73.383
          - type: recall_at_3
            value: 14.872
          - type: recall_at_5
            value: 18.262999999999998
      - task:
          type: Classification
        dataset:
          name: MTEB EmotionClassification
          type: mteb/emotion
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 45.18
          - type: f1
            value: 40.26878691789978
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 62.751999999999995
          - type: map_at_10
            value: 74.131
          - type: map_at_100
            value: 74.407
          - type: map_at_1000
            value: 74.423
          - type: map_at_3
            value: 72.329
          - type: map_at_5
            value: 73.555
          - type: mrr_at_1
            value: 67.282
          - type: mrr_at_10
            value: 78.292
          - type: mrr_at_100
            value: 78.455
          - type: mrr_at_1000
            value: 78.458
          - type: mrr_at_3
            value: 76.755
          - type: mrr_at_5
            value: 77.839
          - type: ndcg_at_1
            value: 67.282
          - type: ndcg_at_10
            value: 79.443
          - type: ndcg_at_100
            value: 80.529
          - type: ndcg_at_1000
            value: 80.812
          - type: ndcg_at_3
            value: 76.281
          - type: ndcg_at_5
            value: 78.235
          - type: precision_at_1
            value: 67.282
          - type: precision_at_10
            value: 10.078
          - type: precision_at_100
            value: 1.082
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 30.178
          - type: precision_at_5
            value: 19.232
          - type: recall_at_1
            value: 62.751999999999995
          - type: recall_at_10
            value: 91.521
          - type: recall_at_100
            value: 95.997
          - type: recall_at_1000
            value: 97.775
          - type: recall_at_3
            value: 83.131
          - type: recall_at_5
            value: 87.93299999999999
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.861
          - type: map_at_10
            value: 30.252000000000002
          - type: map_at_100
            value: 32.082
          - type: map_at_1000
            value: 32.261
          - type: map_at_3
            value: 25.909
          - type: map_at_5
            value: 28.296
          - type: mrr_at_1
            value: 37.346000000000004
          - type: mrr_at_10
            value: 45.802
          - type: mrr_at_100
            value: 46.611999999999995
          - type: mrr_at_1000
            value: 46.659
          - type: mrr_at_3
            value: 43.056
          - type: mrr_at_5
            value: 44.637
          - type: ndcg_at_1
            value: 37.346000000000004
          - type: ndcg_at_10
            value: 38.169
          - type: ndcg_at_100
            value: 44.864
          - type: ndcg_at_1000
            value: 47.974
          - type: ndcg_at_3
            value: 33.619
          - type: ndcg_at_5
            value: 35.317
          - type: precision_at_1
            value: 37.346000000000004
          - type: precision_at_10
            value: 10.693999999999999
          - type: precision_at_100
            value: 1.775
          - type: precision_at_1000
            value: 0.231
          - type: precision_at_3
            value: 22.325
          - type: precision_at_5
            value: 16.852
          - type: recall_at_1
            value: 18.861
          - type: recall_at_10
            value: 45.672000000000004
          - type: recall_at_100
            value: 70.60499999999999
          - type: recall_at_1000
            value: 89.216
          - type: recall_at_3
            value: 30.361
          - type: recall_at_5
            value: 36.998999999999995
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 37.852999999999994
          - type: map_at_10
            value: 59.961
          - type: map_at_100
            value: 60.78
          - type: map_at_1000
            value: 60.843
          - type: map_at_3
            value: 56.39999999999999
          - type: map_at_5
            value: 58.646
          - type: mrr_at_1
            value: 75.70599999999999
          - type: mrr_at_10
            value: 82.321
          - type: mrr_at_100
            value: 82.516
          - type: mrr_at_1000
            value: 82.525
          - type: mrr_at_3
            value: 81.317
          - type: mrr_at_5
            value: 81.922
          - type: ndcg_at_1
            value: 75.70599999999999
          - type: ndcg_at_10
            value: 68.557
          - type: ndcg_at_100
            value: 71.485
          - type: ndcg_at_1000
            value: 72.71600000000001
          - type: ndcg_at_3
            value: 63.524
          - type: ndcg_at_5
            value: 66.338
          - type: precision_at_1
            value: 75.70599999999999
          - type: precision_at_10
            value: 14.463000000000001
          - type: precision_at_100
            value: 1.677
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 40.806
          - type: precision_at_5
            value: 26.709
          - type: recall_at_1
            value: 37.852999999999994
          - type: recall_at_10
            value: 72.316
          - type: recall_at_100
            value: 83.842
          - type: recall_at_1000
            value: 91.999
          - type: recall_at_3
            value: 61.209
          - type: recall_at_5
            value: 66.77199999999999
      - task:
          type: Classification
        dataset:
          name: MTEB ImdbClassification
          type: mteb/imdb
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 85.46039999999999
          - type: ap
            value: 79.9812521351881
          - type: f1
            value: 85.31722909702084
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 22.704
          - type: map_at_10
            value: 35.329
          - type: map_at_100
            value: 36.494
          - type: map_at_1000
            value: 36.541000000000004
          - type: map_at_3
            value: 31.476
          - type: map_at_5
            value: 33.731
          - type: mrr_at_1
            value: 23.294999999999998
          - type: mrr_at_10
            value: 35.859
          - type: mrr_at_100
            value: 36.968
          - type: mrr_at_1000
            value: 37.008
          - type: mrr_at_3
            value: 32.085
          - type: mrr_at_5
            value: 34.299
          - type: ndcg_at_1
            value: 23.324
          - type: ndcg_at_10
            value: 42.274
          - type: ndcg_at_100
            value: 47.839999999999996
          - type: ndcg_at_1000
            value: 48.971
          - type: ndcg_at_3
            value: 34.454
          - type: ndcg_at_5
            value: 38.464
          - type: precision_at_1
            value: 23.324
          - type: precision_at_10
            value: 6.648
          - type: precision_at_100
            value: 0.9440000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.674999999999999
          - type: precision_at_5
            value: 10.850999999999999
          - type: recall_at_1
            value: 22.704
          - type: recall_at_10
            value: 63.660000000000004
          - type: recall_at_100
            value: 89.29899999999999
          - type: recall_at_1000
            value: 97.88900000000001
          - type: recall_at_3
            value: 42.441
          - type: recall_at_5
            value: 52.04
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (en)
          type: mteb/mtop_domain
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 93.1326949384405
          - type: f1
            value: 92.89743579612082
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (de)
          type: mteb/mtop_domain
          config: de
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 89.62524654832347
          - type: f1
            value: 88.65106082263151
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (es)
          type: mteb/mtop_domain
          config: es
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 90.59039359573046
          - type: f1
            value: 90.31532892105662
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (fr)
          type: mteb/mtop_domain
          config: fr
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 86.21046038208581
          - type: f1
            value: 86.41459529813113
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (hi)
          type: mteb/mtop_domain
          config: hi
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 87.3180351380423
          - type: f1
            value: 86.71383078226444
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (th)
          type: mteb/mtop_domain
          config: th
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 86.24231464737792
          - type: f1
            value: 86.31845567592403
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (en)
          type: mteb/mtop_intent
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 75.27131782945736
          - type: f1
            value: 57.52079940417103
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (de)
          type: mteb/mtop_intent
          config: de
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 71.2341504649197
          - type: f1
            value: 51.349951558039244
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (es)
          type: mteb/mtop_intent
          config: es
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 71.27418278852569
          - type: f1
            value: 50.1714985749095
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (fr)
          type: mteb/mtop_intent
          config: fr
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 67.68243031631694
          - type: f1
            value: 50.1066160836192
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (hi)
          type: mteb/mtop_intent
          config: hi
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 69.2362854069559
          - type: f1
            value: 48.821279948766424
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (th)
          type: mteb/mtop_intent
          config: th
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 71.71428571428571
          - type: f1
            value: 53.94611389496195
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (af)
          type: mteb/amazon_massive_intent
          config: af
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.97646267652992
          - type: f1
            value: 57.26797883561521
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (am)
          type: mteb/amazon_massive_intent
          config: am
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 53.65501008742435
          - type: f1
            value: 50.416258382177034
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ar)
          type: mteb/amazon_massive_intent
          config: ar
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 57.45796906523201
          - type: f1
            value: 53.306690547422185
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (az)
          type: mteb/amazon_massive_intent
          config: az
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.59246805648957
          - type: f1
            value: 59.818381969051494
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (bn)
          type: mteb/amazon_massive_intent
          config: bn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.126429051782104
          - type: f1
            value: 58.25993593933026
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (cy)
          type: mteb/amazon_massive_intent
          config: cy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 50.057162071284466
          - type: f1
            value: 46.96095728790911
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (da)
          type: mteb/amazon_massive_intent
          config: da
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.64425016812375
          - type: f1
            value: 62.858291698755764
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (de)
          type: mteb/amazon_massive_intent
          config: de
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.08944182918628
          - type: f1
            value: 62.44639030604241
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (el)
          type: mteb/amazon_massive_intent
          config: el
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.68056489576328
          - type: f1
            value: 61.775326758789504
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (en)
          type: mteb/amazon_massive_intent
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 72.11163416274377
          - type: f1
            value: 69.70789096927015
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (es)
          type: mteb/amazon_massive_intent
          config: es
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.40282447881641
          - type: f1
            value: 66.38492065671895
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fa)
          type: mteb/amazon_massive_intent
          config: fa
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.24613315400134
          - type: f1
            value: 64.3348019501336
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fi)
          type: mteb/amazon_massive_intent
          config: fi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.78345662407531
          - type: f1
            value: 62.21279452354622
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (fr)
          type: mteb/amazon_massive_intent
          config: fr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.9455279085407
          - type: f1
            value: 65.48193124964094
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (he)
          type: mteb/amazon_massive_intent
          config: he
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.05110961667788
          - type: f1
            value: 58.097856564684534
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hi)
          type: mteb/amazon_massive_intent
          config: hi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.95292535305985
          - type: f1
            value: 62.09182174767901
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hu)
          type: mteb/amazon_massive_intent
          config: hu
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.97310020174848
          - type: f1
            value: 61.14252567730396
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (hy)
          type: mteb/amazon_massive_intent
          config: hy
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.08069939475453
          - type: f1
            value: 57.044041742492034
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (id)
          type: mteb/amazon_massive_intent
          config: id
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.63752521856085
          - type: f1
            value: 63.889340907205316
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (is)
          type: mteb/amazon_massive_intent
          config: is
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 56.385339609952936
          - type: f1
            value: 53.449033750088304
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (it)
          type: mteb/amazon_massive_intent
          config: it
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.93073301950234
          - type: f1
            value: 65.9884357824104
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ja)
          type: mteb/amazon_massive_intent
          config: ja
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.94418291862812
          - type: f1
            value: 66.48740222583132
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (jv)
          type: mteb/amazon_massive_intent
          config: jv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 54.26025554808339
          - type: f1
            value: 50.19562815100793
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ka)
          type: mteb/amazon_massive_intent
          config: ka
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 48.98789509078682
          - type: f1
            value: 46.65788438676836
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (km)
          type: mteb/amazon_massive_intent
          config: km
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 44.68728984532616
          - type: f1
            value: 41.642419349541996
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (kn)
          type: mteb/amazon_massive_intent
          config: kn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.19300605245461
          - type: f1
            value: 55.8626492442437
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ko)
          type: mteb/amazon_massive_intent
          config: ko
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.33826496301278
          - type: f1
            value: 63.89499791648792
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (lv)
          type: mteb/amazon_massive_intent
          config: lv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.33960995292536
          - type: f1
            value: 57.15242464180892
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ml)
          type: mteb/amazon_massive_intent
          config: ml
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 63.09347679892402
          - type: f1
            value: 59.64733214063841
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (mn)
          type: mteb/amazon_massive_intent
          config: mn
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 58.75924680564896
          - type: f1
            value: 55.96585692366827
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ms)
          type: mteb/amazon_massive_intent
          config: ms
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.48486886348352
          - type: f1
            value: 59.45143559032946
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (my)
          type: mteb/amazon_massive_intent
          config: my
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 58.56422326832549
          - type: f1
            value: 54.96368702901926
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (nb)
          type: mteb/amazon_massive_intent
          config: nb
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.18022864828512
          - type: f1
            value: 63.05369805040634
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (nl)
          type: mteb/amazon_massive_intent
          config: nl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.30329522528581
          - type: f1
            value: 64.06084612020727
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (pl)
          type: mteb/amazon_massive_intent
          config: pl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.36919973100201
          - type: f1
            value: 65.12154124788887
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (pt)
          type: mteb/amazon_massive_intent
          config: pt
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.98117014122394
          - type: f1
            value: 66.41847559806962
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ro)
          type: mteb/amazon_massive_intent
          config: ro
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.53799596503026
          - type: f1
            value: 62.17067330740817
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ru)
          type: mteb/amazon_massive_intent
          config: ru
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.01815736381977
          - type: f1
            value: 66.24988369607843
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sl)
          type: mteb/amazon_massive_intent
          config: sl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 62.34700739744452
          - type: f1
            value: 59.957933424941636
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sq)
          type: mteb/amazon_massive_intent
          config: sq
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.23402824478815
          - type: f1
            value: 57.98836976018471
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sv)
          type: mteb/amazon_massive_intent
          config: sv
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 68.54068594485541
          - type: f1
            value: 65.43849680666855
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (sw)
          type: mteb/amazon_massive_intent
          config: sw
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 55.998655010087425
          - type: f1
            value: 52.83737515406804
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ta)
          type: mteb/amazon_massive_intent
          config: ta
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 58.71217215870882
          - type: f1
            value: 55.051794977833026
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (te)
          type: mteb/amazon_massive_intent
          config: te
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 59.724277067921996
          - type: f1
            value: 56.33485571838306
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (th)
          type: mteb/amazon_massive_intent
          config: th
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 65.59515803631473
          - type: f1
            value: 64.96772366193588
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (tl)
          type: mteb/amazon_massive_intent
          config: tl
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 60.860793544048406
          - type: f1
            value: 58.148845819115394
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (tr)
          type: mteb/amazon_massive_intent
          config: tr
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 67.40753194351043
          - type: f1
            value: 63.18903778054698
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (ur)
          type: mteb/amazon_massive_intent
          config: ur
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 61.52320107599194
          - type: f1
            value: 58.356144563398516
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (vi)
          type: mteb/amazon_massive_intent
          config: vi
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 66.17014122394083
          - type: f1
            value: 63.919964062638925
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-CN)
          type: mteb/amazon_massive_intent
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 69.15601882985878
          - type: f1
            value: 67.01451905761371
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (zh-TW)
          type: mteb/amazon_massive_intent
          config: zh-TW
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 64.65030262273034
          - type: f1
            value: 64.14420425129063
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (af)
          type: mteb/amazon_massive_scenario
          config: af
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.08742434431743
          - type: f1
            value: 63.044060042311756
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (am)
          type: mteb/amazon_massive_scenario
          config: am
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 58.52387357094821
          - type: f1
            value: 56.82398588814534
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ar)
          type: mteb/amazon_massive_scenario
          config: ar
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.239408204438476
          - type: f1
            value: 61.92570286170469
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (az)
          type: mteb/amazon_massive_scenario
          config: az
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 63.74915938130463
          - type: f1
            value: 62.130740689396276
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (bn)
          type: mteb/amazon_massive_scenario
          config: bn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.00336247478144
          - type: f1
            value: 63.71080635228055
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (cy)
          type: mteb/amazon_massive_scenario
          config: cy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 52.837928715534645
          - type: f1
            value: 50.390741680320836
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (da)
          type: mteb/amazon_massive_scenario
          config: da
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.42098184263618
          - type: f1
            value: 71.41355113538995
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (de)
          type: mteb/amazon_massive_scenario
          config: de
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.95359784801613
          - type: f1
            value: 71.42699340156742
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (el)
          type: mteb/amazon_massive_scenario
          config: el
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.18157363819772
          - type: f1
            value: 69.74836113037671
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (en)
          type: mteb/amazon_massive_scenario
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 77.08137188971082
          - type: f1
            value: 76.78000685068261
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (es)
          type: mteb/amazon_massive_scenario
          config: es
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.5030262273033
          - type: f1
            value: 71.71620130425673
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fa)
          type: mteb/amazon_massive_scenario
          config: fa
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.24546065904505
          - type: f1
            value: 69.07638311730359
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fi)
          type: mteb/amazon_massive_scenario
          config: fi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.12911903160726
          - type: f1
            value: 68.32651736539815
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (fr)
          type: mteb/amazon_massive_scenario
          config: fr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.89307330195025
          - type: f1
            value: 71.33986549860187
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (he)
          type: mteb/amazon_massive_scenario
          config: he
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 67.44451916610626
          - type: f1
            value: 66.90192664503866
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hi)
          type: mteb/amazon_massive_scenario
          config: hi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.16274377942166
          - type: f1
            value: 68.01090953775066
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hu)
          type: mteb/amazon_massive_scenario
          config: hu
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.75319435104237
          - type: f1
            value: 70.18035309201403
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (hy)
          type: mteb/amazon_massive_scenario
          config: hy
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 63.14391392064559
          - type: f1
            value: 61.48286540778145
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (id)
          type: mteb/amazon_massive_scenario
          config: id
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.70275722932078
          - type: f1
            value: 70.26164779846495
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (is)
          type: mteb/amazon_massive_scenario
          config: is
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 60.93813046402153
          - type: f1
            value: 58.8852862116525
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (it)
          type: mteb/amazon_massive_scenario
          config: it
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.320107599193
          - type: f1
            value: 72.19836409602924
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ja)
          type: mteb/amazon_massive_scenario
          config: ja
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 74.65366509751176
          - type: f1
            value: 74.55188288799579
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (jv)
          type: mteb/amazon_massive_scenario
          config: jv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.694014794889036
          - type: f1
            value: 58.11353311721067
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ka)
          type: mteb/amazon_massive_scenario
          config: ka
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 54.37457969065231
          - type: f1
            value: 52.81306134311697
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (km)
          type: mteb/amazon_massive_scenario
          config: km
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 48.3086751849361
          - type: f1
            value: 45.396449765419376
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (kn)
          type: mteb/amazon_massive_scenario
          config: kn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.151983860121064
          - type: f1
            value: 60.31762544281696
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ko)
          type: mteb/amazon_massive_scenario
          config: ko
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.44788164088769
          - type: f1
            value: 71.68150151736367
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (lv)
          type: mteb/amazon_massive_scenario
          config: lv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.81439139206455
          - type: f1
            value: 62.06735559105593
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ml)
          type: mteb/amazon_massive_scenario
          config: ml
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 68.04303967720242
          - type: f1
            value: 66.68298851670133
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (mn)
          type: mteb/amazon_massive_scenario
          config: mn
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 61.43913920645595
          - type: f1
            value: 60.25605977560783
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ms)
          type: mteb/amazon_massive_scenario
          config: ms
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.90316072629456
          - type: f1
            value: 65.1325924692381
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (my)
          type: mteb/amazon_massive_scenario
          config: my
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 61.63752521856086
          - type: f1
            value: 59.14284778039585
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (nb)
          type: mteb/amazon_massive_scenario
          config: nb
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.63080026899797
          - type: f1
            value: 70.89771864626877
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (nl)
          type: mteb/amazon_massive_scenario
          config: nl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.10827168796234
          - type: f1
            value: 71.71954219691159
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (pl)
          type: mteb/amazon_massive_scenario
          config: pl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.59515803631471
          - type: f1
            value: 70.05040128099003
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (pt)
          type: mteb/amazon_massive_scenario
          config: pt
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.83389374579691
          - type: f1
            value: 70.84877936562735
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ro)
          type: mteb/amazon_massive_scenario
          config: ro
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 69.18628110289173
          - type: f1
            value: 68.97232927921841
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ru)
          type: mteb/amazon_massive_scenario
          config: ru
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 72.99260255548083
          - type: f1
            value: 72.85139492157732
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sl)
          type: mteb/amazon_massive_scenario
          config: sl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 65.26227303295225
          - type: f1
            value: 65.08833655469431
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sq)
          type: mteb/amazon_massive_scenario
          config: sq
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 66.48621385339611
          - type: f1
            value: 64.43483199071298
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sv)
          type: mteb/amazon_massive_scenario
          config: sv
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 73.14391392064559
          - type: f1
            value: 72.2580822579741
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (sw)
          type: mteb/amazon_massive_scenario
          config: sw
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 59.88567585743107
          - type: f1
            value: 58.3073765932569
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ta)
          type: mteb/amazon_massive_scenario
          config: ta
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.38399462004034
          - type: f1
            value: 60.82139544252606
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (te)
          type: mteb/amazon_massive_scenario
          config: te
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.58574310692671
          - type: f1
            value: 60.71443370385374
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (th)
          type: mteb/amazon_massive_scenario
          config: th
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.61398789509079
          - type: f1
            value: 70.99761812049401
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (tl)
          type: mteb/amazon_massive_scenario
          config: tl
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 62.73705447209146
          - type: f1
            value: 61.680849331794796
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (tr)
          type: mteb/amazon_massive_scenario
          config: tr
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 71.66778749159381
          - type: f1
            value: 71.17320646080115
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (ur)
          type: mteb/amazon_massive_scenario
          config: ur
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 64.640215198386
          - type: f1
            value: 63.301805157015444
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (vi)
          type: mteb/amazon_massive_scenario
          config: vi
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.00672494956288
          - type: f1
            value: 70.26005548582106
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-CN)
          type: mteb/amazon_massive_scenario
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 75.42030934767989
          - type: f1
            value: 75.2074842882598
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (zh-TW)
          type: mteb/amazon_massive_scenario
          config: zh-TW
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 70.69266980497646
          - type: f1
            value: 70.94103167391192
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringP2P
          type: mteb/medrxiv-clustering-p2p
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 28.91697191169135
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringS2S
          type: mteb/medrxiv-clustering-s2s
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 28.434000079573313
      - task:
          type: Reranking
        dataset:
          name: MTEB MindSmallReranking
          type: mteb/mind_small
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.96683513343383
          - type: mrr
            value: 31.967364078714834
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.5280000000000005
          - type: map_at_10
            value: 11.793
          - type: map_at_100
            value: 14.496999999999998
          - type: map_at_1000
            value: 15.783
          - type: map_at_3
            value: 8.838
          - type: map_at_5
            value: 10.07
          - type: mrr_at_1
            value: 43.653
          - type: mrr_at_10
            value: 51.531000000000006
          - type: mrr_at_100
            value: 52.205
          - type: mrr_at_1000
            value: 52.242999999999995
          - type: mrr_at_3
            value: 49.431999999999995
          - type: mrr_at_5
            value: 50.470000000000006
          - type: ndcg_at_1
            value: 42.415000000000006
          - type: ndcg_at_10
            value: 32.464999999999996
          - type: ndcg_at_100
            value: 28.927999999999997
          - type: ndcg_at_1000
            value: 37.629000000000005
          - type: ndcg_at_3
            value: 37.845
          - type: ndcg_at_5
            value: 35.147
          - type: precision_at_1
            value: 43.653
          - type: precision_at_10
            value: 23.932000000000002
          - type: precision_at_100
            value: 7.17
          - type: precision_at_1000
            value: 1.967
          - type: precision_at_3
            value: 35.397
          - type: precision_at_5
            value: 29.907
          - type: recall_at_1
            value: 5.5280000000000005
          - type: recall_at_10
            value: 15.568000000000001
          - type: recall_at_100
            value: 28.54
          - type: recall_at_1000
            value: 59.864
          - type: recall_at_3
            value: 9.822000000000001
          - type: recall_at_5
            value: 11.726
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: nq
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 37.041000000000004
          - type: map_at_10
            value: 52.664
          - type: map_at_100
            value: 53.477
          - type: map_at_1000
            value: 53.505
          - type: map_at_3
            value: 48.510999999999996
          - type: map_at_5
            value: 51.036
          - type: mrr_at_1
            value: 41.338
          - type: mrr_at_10
            value: 55.071000000000005
          - type: mrr_at_100
            value: 55.672
          - type: mrr_at_1000
            value: 55.689
          - type: mrr_at_3
            value: 51.82
          - type: mrr_at_5
            value: 53.852
          - type: ndcg_at_1
            value: 41.338
          - type: ndcg_at_10
            value: 60.01800000000001
          - type: ndcg_at_100
            value: 63.409000000000006
          - type: ndcg_at_1000
            value: 64.017
          - type: ndcg_at_3
            value: 52.44799999999999
          - type: ndcg_at_5
            value: 56.571000000000005
          - type: precision_at_1
            value: 41.338
          - type: precision_at_10
            value: 9.531
          - type: precision_at_100
            value: 1.145
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 23.416
          - type: precision_at_5
            value: 16.46
          - type: recall_at_1
            value: 37.041000000000004
          - type: recall_at_10
            value: 79.76299999999999
          - type: recall_at_100
            value: 94.39
          - type: recall_at_1000
            value: 98.851
          - type: recall_at_3
            value: 60.465
          - type: recall_at_5
            value: 69.906
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 69.952
          - type: map_at_10
            value: 83.758
          - type: map_at_100
            value: 84.406
          - type: map_at_1000
            value: 84.425
          - type: map_at_3
            value: 80.839
          - type: map_at_5
            value: 82.646
          - type: mrr_at_1
            value: 80.62
          - type: mrr_at_10
            value: 86.947
          - type: mrr_at_100
            value: 87.063
          - type: mrr_at_1000
            value: 87.064
          - type: mrr_at_3
            value: 85.96000000000001
          - type: mrr_at_5
            value: 86.619
          - type: ndcg_at_1
            value: 80.63
          - type: ndcg_at_10
            value: 87.64800000000001
          - type: ndcg_at_100
            value: 88.929
          - type: ndcg_at_1000
            value: 89.054
          - type: ndcg_at_3
            value: 84.765
          - type: ndcg_at_5
            value: 86.291
          - type: precision_at_1
            value: 80.63
          - type: precision_at_10
            value: 13.314
          - type: precision_at_100
            value: 1.525
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.1
          - type: precision_at_5
            value: 24.372
          - type: recall_at_1
            value: 69.952
          - type: recall_at_10
            value: 94.955
          - type: recall_at_100
            value: 99.38
          - type: recall_at_1000
            value: 99.96000000000001
          - type: recall_at_3
            value: 86.60600000000001
          - type: recall_at_5
            value: 90.997
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClustering
          type: mteb/reddit-clustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 42.41329517878427
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClusteringP2P
          type: mteb/reddit-clustering-p2p
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 55.171278362748666
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.213
          - type: map_at_10
            value: 9.895
          - type: map_at_100
            value: 11.776
          - type: map_at_1000
            value: 12.084
          - type: map_at_3
            value: 7.2669999999999995
          - type: map_at_5
            value: 8.620999999999999
          - type: mrr_at_1
            value: 20.8
          - type: mrr_at_10
            value: 31.112000000000002
          - type: mrr_at_100
            value: 32.274
          - type: mrr_at_1000
            value: 32.35
          - type: mrr_at_3
            value: 28.133000000000003
          - type: mrr_at_5
            value: 29.892999999999997
          - type: ndcg_at_1
            value: 20.8
          - type: ndcg_at_10
            value: 17.163999999999998
          - type: ndcg_at_100
            value: 24.738
          - type: ndcg_at_1000
            value: 30.316
          - type: ndcg_at_3
            value: 16.665
          - type: ndcg_at_5
            value: 14.478
          - type: precision_at_1
            value: 20.8
          - type: precision_at_10
            value: 8.74
          - type: precision_at_100
            value: 1.963
          - type: precision_at_1000
            value: 0.33
          - type: precision_at_3
            value: 15.467
          - type: precision_at_5
            value: 12.6
          - type: recall_at_1
            value: 4.213
          - type: recall_at_10
            value: 17.698
          - type: recall_at_100
            value: 39.838
          - type: recall_at_1000
            value: 66.893
          - type: recall_at_3
            value: 9.418
          - type: recall_at_5
            value: 12.773000000000001
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R
          type: mteb/sickr-sts
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 82.90453315738294
          - type: cos_sim_spearman
            value: 78.51197850080254
          - type: euclidean_pearson
            value: 80.09647123597748
          - type: euclidean_spearman
            value: 78.63548011514061
          - type: manhattan_pearson
            value: 80.10645285675231
          - type: manhattan_spearman
            value: 78.57861806068901
      - task:
          type: STS
        dataset:
          name: MTEB STS12
          type: mteb/sts12-sts
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 84.2616156846401
          - type: cos_sim_spearman
            value: 76.69713867850156
          - type: euclidean_pearson
            value: 77.97948563800394
          - type: euclidean_spearman
            value: 74.2371211567807
          - type: manhattan_pearson
            value: 77.69697879669705
          - type: manhattan_spearman
            value: 73.86529778022278
      - task:
          type: STS
        dataset:
          name: MTEB STS13
          type: mteb/sts13-sts
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 77.0293269315045
          - type: cos_sim_spearman
            value: 78.02555120584198
          - type: euclidean_pearson
            value: 78.25398100379078
          - type: euclidean_spearman
            value: 78.66963870599464
          - type: manhattan_pearson
            value: 78.14314682167348
          - type: manhattan_spearman
            value: 78.57692322969135
      - task:
          type: STS
        dataset:
          name: MTEB STS14
          type: mteb/sts14-sts
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 79.16989925136942
          - type: cos_sim_spearman
            value: 76.5996225327091
          - type: euclidean_pearson
            value: 77.8319003279786
          - type: euclidean_spearman
            value: 76.42824009468998
          - type: manhattan_pearson
            value: 77.69118862737736
          - type: manhattan_spearman
            value: 76.25568104762812
      - task:
          type: STS
        dataset:
          name: MTEB STS15
          type: mteb/sts15-sts
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 87.42012286935325
          - type: cos_sim_spearman
            value: 88.15654297884122
          - type: euclidean_pearson
            value: 87.34082819427852
          - type: euclidean_spearman
            value: 88.06333589547084
          - type: manhattan_pearson
            value: 87.25115596784842
          - type: manhattan_spearman
            value: 87.9559927695203
      - task:
          type: STS
        dataset:
          name: MTEB STS16
          type: mteb/sts16-sts
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 82.88222044996712
          - type: cos_sim_spearman
            value: 84.28476589061077
          - type: euclidean_pearson
            value: 83.17399758058309
          - type: euclidean_spearman
            value: 83.85497357244542
          - type: manhattan_pearson
            value: 83.0308397703786
          - type: manhattan_spearman
            value: 83.71554539935046
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (ko-ko)
          type: mteb/sts17-crosslingual-sts
          config: ko-ko
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 80.20682986257339
          - type: cos_sim_spearman
            value: 79.94567120362092
          - type: euclidean_pearson
            value: 79.43122480368902
          - type: euclidean_spearman
            value: 79.94802077264987
          - type: manhattan_pearson
            value: 79.32653021527081
          - type: manhattan_spearman
            value: 79.80961146709178
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (ar-ar)
          type: mteb/sts17-crosslingual-sts
          config: ar-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 74.46578144394383
          - type: cos_sim_spearman
            value: 74.52496637472179
          - type: euclidean_pearson
            value: 72.2903807076809
          - type: euclidean_spearman
            value: 73.55549359771645
          - type: manhattan_pearson
            value: 72.09324837709393
          - type: manhattan_spearman
            value: 73.36743103606581
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-ar)
          type: mteb/sts17-crosslingual-sts
          config: en-ar
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 71.37272335116
          - type: cos_sim_spearman
            value: 71.26702117766037
          - type: euclidean_pearson
            value: 67.114829954434
          - type: euclidean_spearman
            value: 66.37938893947761
          - type: manhattan_pearson
            value: 66.79688574095246
          - type: manhattan_spearman
            value: 66.17292828079667
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-de)
          type: mteb/sts17-crosslingual-sts
          config: en-de
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 80.61016770129092
          - type: cos_sim_spearman
            value: 82.08515426632214
          - type: euclidean_pearson
            value: 80.557340361131
          - type: euclidean_spearman
            value: 80.37585812266175
          - type: manhattan_pearson
            value: 80.6782873404285
          - type: manhattan_spearman
            value: 80.6678073032024
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-en)
          type: mteb/sts17-crosslingual-sts
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.00150745350108
          - type: cos_sim_spearman
            value: 87.83441972211425
          - type: euclidean_pearson
            value: 87.94826702308792
          - type: euclidean_spearman
            value: 87.46143974860725
          - type: manhattan_pearson
            value: 87.97560344306105
          - type: manhattan_spearman
            value: 87.5267102829796
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-tr)
          type: mteb/sts17-crosslingual-sts
          config: en-tr
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 64.76325252267235
          - type: cos_sim_spearman
            value: 63.32615095463905
          - type: euclidean_pearson
            value: 64.07920669155716
          - type: euclidean_spearman
            value: 61.21409893072176
          - type: manhattan_pearson
            value: 64.26308625680016
          - type: manhattan_spearman
            value: 61.2438185254079
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (es-en)
          type: mteb/sts17-crosslingual-sts
          config: es-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 75.82644463022595
          - type: cos_sim_spearman
            value: 76.50381269945073
          - type: euclidean_pearson
            value: 75.1328548315934
          - type: euclidean_spearman
            value: 75.63761139408453
          - type: manhattan_pearson
            value: 75.18610101241407
          - type: manhattan_spearman
            value: 75.30669266354164
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (es-es)
          type: mteb/sts17-crosslingual-sts
          config: es-es
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 87.49994164686832
          - type: cos_sim_spearman
            value: 86.73743986245549
          - type: euclidean_pearson
            value: 86.8272894387145
          - type: euclidean_spearman
            value: 85.97608491000507
          - type: manhattan_pearson
            value: 86.74960140396779
          - type: manhattan_spearman
            value: 85.79285984190273
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (fr-en)
          type: mteb/sts17-crosslingual-sts
          config: fr-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 79.58172210788469
          - type: cos_sim_spearman
            value: 80.17516468334607
          - type: euclidean_pearson
            value: 77.56537843470504
          - type: euclidean_spearman
            value: 77.57264627395521
          - type: manhattan_pearson
            value: 78.09703521695943
          - type: manhattan_spearman
            value: 78.15942760916954
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (it-en)
          type: mteb/sts17-crosslingual-sts
          config: it-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 79.7589932931751
          - type: cos_sim_spearman
            value: 80.15210089028162
          - type: euclidean_pearson
            value: 77.54135223516057
          - type: euclidean_spearman
            value: 77.52697996368764
          - type: manhattan_pearson
            value: 77.65734439572518
          - type: manhattan_spearman
            value: 77.77702992016121
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (nl-en)
          type: mteb/sts17-crosslingual-sts
          config: nl-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 79.16682365511267
          - type: cos_sim_spearman
            value: 79.25311267628506
          - type: euclidean_pearson
            value: 77.54882036762244
          - type: euclidean_spearman
            value: 77.33212935194827
          - type: manhattan_pearson
            value: 77.98405516064015
          - type: manhattan_spearman
            value: 77.85075717865719
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (en)
          type: mteb/sts22-crosslingual-sts
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 59.10473294775917
          - type: cos_sim_spearman
            value: 61.82780474476838
          - type: euclidean_pearson
            value: 45.885111672377256
          - type: euclidean_spearman
            value: 56.88306351932454
          - type: manhattan_pearson
            value: 46.101218127323186
          - type: manhattan_spearman
            value: 56.80953694186333
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de)
          type: mteb/sts22-crosslingual-sts
          config: de
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 45.781923079584146
          - type: cos_sim_spearman
            value: 55.95098449691107
          - type: euclidean_pearson
            value: 25.4571031323205
          - type: euclidean_spearman
            value: 49.859978118078935
          - type: manhattan_pearson
            value: 25.624938455041384
          - type: manhattan_spearman
            value: 49.99546185049401
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es)
          type: mteb/sts22-crosslingual-sts
          config: es
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 60.00618133997907
          - type: cos_sim_spearman
            value: 66.57896677718321
          - type: euclidean_pearson
            value: 42.60118466388821
          - type: euclidean_spearman
            value: 62.8210759715209
          - type: manhattan_pearson
            value: 42.63446860604094
          - type: manhattan_spearman
            value: 62.73803068925271
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (pl)
          type: mteb/sts22-crosslingual-sts
          config: pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 28.460759121626943
          - type: cos_sim_spearman
            value: 34.13459007469131
          - type: euclidean_pearson
            value: 6.0917739325525195
          - type: euclidean_spearman
            value: 27.9947262664867
          - type: manhattan_pearson
            value: 6.16877864169911
          - type: manhattan_spearman
            value: 28.00664163971514
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (tr)
          type: mteb/sts22-crosslingual-sts
          config: tr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 57.42546621771696
          - type: cos_sim_spearman
            value: 63.699663168970474
          - type: euclidean_pearson
            value: 38.12085278789738
          - type: euclidean_spearman
            value: 58.12329140741536
          - type: manhattan_pearson
            value: 37.97364549443335
          - type: manhattan_spearman
            value: 57.81545502318733
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (ar)
          type: mteb/sts22-crosslingual-sts
          config: ar
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 46.82241380954213
          - type: cos_sim_spearman
            value: 57.86569456006391
          - type: euclidean_pearson
            value: 31.80480070178813
          - type: euclidean_spearman
            value: 52.484000620130104
          - type: manhattan_pearson
            value: 31.952708554646097
          - type: manhattan_spearman
            value: 52.8560972356195
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (ru)
          type: mteb/sts22-crosslingual-sts
          config: ru
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 52.00447170498087
          - type: cos_sim_spearman
            value: 60.664116225735164
          - type: euclidean_pearson
            value: 33.87382555421702
          - type: euclidean_spearman
            value: 55.74649067458667
          - type: manhattan_pearson
            value: 33.99117246759437
          - type: manhattan_spearman
            value: 55.98749034923899
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh)
          type: mteb/sts22-crosslingual-sts
          config: zh
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 58.06497233105448
          - type: cos_sim_spearman
            value: 65.62968801135676
          - type: euclidean_pearson
            value: 47.482076613243905
          - type: euclidean_spearman
            value: 62.65137791498299
          - type: manhattan_pearson
            value: 47.57052626104093
          - type: manhattan_spearman
            value: 62.436916516613294
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (fr)
          type: mteb/sts22-crosslingual-sts
          config: fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 70.49397298562575
          - type: cos_sim_spearman
            value: 74.79604041187868
          - type: euclidean_pearson
            value: 49.661891561317795
          - type: euclidean_spearman
            value: 70.31535537621006
          - type: manhattan_pearson
            value: 49.553715741850006
          - type: manhattan_spearman
            value: 70.24779344636806
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-en)
          type: mteb/sts22-crosslingual-sts
          config: de-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 55.640574515348696
          - type: cos_sim_spearman
            value: 54.927959317689
          - type: euclidean_pearson
            value: 29.00139666967476
          - type: euclidean_spearman
            value: 41.86386566971605
          - type: manhattan_pearson
            value: 29.47411067730344
          - type: manhattan_spearman
            value: 42.337438424952786
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es-en)
          type: mteb/sts22-crosslingual-sts
          config: es-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 68.14095292259312
          - type: cos_sim_spearman
            value: 73.99017581234789
          - type: euclidean_pearson
            value: 46.46304297872084
          - type: euclidean_spearman
            value: 60.91834114800041
          - type: manhattan_pearson
            value: 47.07072666338692
          - type: manhattan_spearman
            value: 61.70415727977926
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (it)
          type: mteb/sts22-crosslingual-sts
          config: it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 73.27184653359575
          - type: cos_sim_spearman
            value: 77.76070252418626
          - type: euclidean_pearson
            value: 62.30586577544778
          - type: euclidean_spearman
            value: 75.14246629110978
          - type: manhattan_pearson
            value: 62.328196884927046
          - type: manhattan_spearman
            value: 75.1282792981433
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (pl-en)
          type: mteb/sts22-crosslingual-sts
          config: pl-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 71.59448528829957
          - type: cos_sim_spearman
            value: 70.37277734222123
          - type: euclidean_pearson
            value: 57.63145565721123
          - type: euclidean_spearman
            value: 66.10113048304427
          - type: manhattan_pearson
            value: 57.18897811586808
          - type: manhattan_spearman
            value: 66.5595511215901
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (zh-en)
          type: mteb/sts22-crosslingual-sts
          config: zh-en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 66.37520607720838
          - type: cos_sim_spearman
            value: 69.92282148997948
          - type: euclidean_pearson
            value: 40.55768770125291
          - type: euclidean_spearman
            value: 55.189128944669605
          - type: manhattan_pearson
            value: 41.03566433468883
          - type: manhattan_spearman
            value: 55.61251893174558
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (es-it)
          type: mteb/sts22-crosslingual-sts
          config: es-it
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 57.791929533771835
          - type: cos_sim_spearman
            value: 66.45819707662093
          - type: euclidean_pearson
            value: 39.03686018511092
          - type: euclidean_spearman
            value: 56.01282695640428
          - type: manhattan_pearson
            value: 38.91586623619632
          - type: manhattan_spearman
            value: 56.69394943612747
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-fr)
          type: mteb/sts22-crosslingual-sts
          config: de-fr
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 47.82224468473866
          - type: cos_sim_spearman
            value: 59.467307194781164
          - type: euclidean_pearson
            value: 27.428459190256145
          - type: euclidean_spearman
            value: 60.83463107397519
          - type: manhattan_pearson
            value: 27.487391578496638
          - type: manhattan_spearman
            value: 61.281380460246496
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (de-pl)
          type: mteb/sts22-crosslingual-sts
          config: de-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 16.306666792752644
          - type: cos_sim_spearman
            value: 39.35486427252405
          - type: euclidean_pearson
            value: -2.7887154897955435
          - type: euclidean_spearman
            value: 27.1296051831719
          - type: manhattan_pearson
            value: -3.202291270581297
          - type: manhattan_spearman
            value: 26.32895849218158
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (fr-pl)
          type: mteb/sts22-crosslingual-sts
          config: fr-pl
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 59.67006803805076
          - type: cos_sim_spearman
            value: 73.24670207647144
          - type: euclidean_pearson
            value: 46.91884681500483
          - type: euclidean_spearman
            value: 16.903085094570333
          - type: manhattan_pearson
            value: 46.88391675325812
          - type: manhattan_spearman
            value: 28.17180849095055
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmark
          type: mteb/stsbenchmark-sts
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 83.79555591223837
          - type: cos_sim_spearman
            value: 85.63658602085185
          - type: euclidean_pearson
            value: 85.22080894037671
          - type: euclidean_spearman
            value: 85.54113580167038
          - type: manhattan_pearson
            value: 85.1639505960118
          - type: manhattan_spearman
            value: 85.43502665436196
      - task:
          type: Reranking
        dataset:
          name: MTEB SciDocsRR
          type: mteb/scidocs-reranking
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 80.73900991689766
          - type: mrr
            value: 94.81624131133934
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 55.678000000000004
          - type: map_at_10
            value: 65.135
          - type: map_at_100
            value: 65.824
          - type: map_at_1000
            value: 65.852
          - type: map_at_3
            value: 62.736000000000004
          - type: map_at_5
            value: 64.411
          - type: mrr_at_1
            value: 58.333
          - type: mrr_at_10
            value: 66.5
          - type: mrr_at_100
            value: 67.053
          - type: mrr_at_1000
            value: 67.08
          - type: mrr_at_3
            value: 64.944
          - type: mrr_at_5
            value: 65.89399999999999
          - type: ndcg_at_1
            value: 58.333
          - type: ndcg_at_10
            value: 69.34700000000001
          - type: ndcg_at_100
            value: 72.32
          - type: ndcg_at_1000
            value: 73.014
          - type: ndcg_at_3
            value: 65.578
          - type: ndcg_at_5
            value: 67.738
          - type: precision_at_1
            value: 58.333
          - type: precision_at_10
            value: 9.033
          - type: precision_at_100
            value: 1.0670000000000002
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 25.444
          - type: precision_at_5
            value: 16.933
          - type: recall_at_1
            value: 55.678000000000004
          - type: recall_at_10
            value: 80.72200000000001
          - type: recall_at_100
            value: 93.93299999999999
          - type: recall_at_1000
            value: 99.333
          - type: recall_at_3
            value: 70.783
          - type: recall_at_5
            value: 75.978
      - task:
          type: PairClassification
        dataset:
          name: MTEB SprintDuplicateQuestions
          type: mteb/sprintduplicatequestions-pairclassification
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.74653465346535
          - type: cos_sim_ap
            value: 93.01476369929063
          - type: cos_sim_f1
            value: 86.93009118541033
          - type: cos_sim_precision
            value: 88.09034907597535
          - type: cos_sim_recall
            value: 85.8
          - type: dot_accuracy
            value: 99.22970297029703
          - type: dot_ap
            value: 51.58725659485144
          - type: dot_f1
            value: 53.51351351351352
          - type: dot_precision
            value: 58.235294117647065
          - type: dot_recall
            value: 49.5
          - type: euclidean_accuracy
            value: 99.74356435643564
          - type: euclidean_ap
            value: 92.40332894384368
          - type: euclidean_f1
            value: 86.97838109602817
          - type: euclidean_precision
            value: 87.46208291203236
          - type: euclidean_recall
            value: 86.5
          - type: manhattan_accuracy
            value: 99.73069306930694
          - type: manhattan_ap
            value: 92.01320815721121
          - type: manhattan_f1
            value: 86.4135864135864
          - type: manhattan_precision
            value: 86.32734530938124
          - type: manhattan_recall
            value: 86.5
          - type: max_accuracy
            value: 99.74653465346535
          - type: max_ap
            value: 93.01476369929063
          - type: max_f1
            value: 86.97838109602817
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClustering
          type: mteb/stackexchange-clustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 55.2660514302523
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClusteringP2P
          type: mteb/stackexchange-clustering-p2p
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 30.4637783572547
      - task:
          type: Reranking
        dataset:
          name: MTEB StackOverflowDupQuestions
          type: mteb/stackoverflowdupquestions-reranking
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 49.41377758357637
          - type: mrr
            value: 50.138451213818854
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEval
          type: mteb/summeval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 28.887846011166594
          - type: cos_sim_spearman
            value: 30.10823258355903
          - type: dot_pearson
            value: 12.888049550236385
          - type: dot_spearman
            value: 12.827495903098123
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.21
          - type: map_at_10
            value: 1.667
          - type: map_at_100
            value: 9.15
          - type: map_at_1000
            value: 22.927
          - type: map_at_3
            value: 0.573
          - type: map_at_5
            value: 0.915
          - type: mrr_at_1
            value: 80
          - type: mrr_at_10
            value: 87.167
          - type: mrr_at_100
            value: 87.167
          - type: mrr_at_1000
            value: 87.167
          - type: mrr_at_3
            value: 85.667
          - type: mrr_at_5
            value: 87.167
          - type: ndcg_at_1
            value: 76
          - type: ndcg_at_10
            value: 69.757
          - type: ndcg_at_100
            value: 52.402
          - type: ndcg_at_1000
            value: 47.737
          - type: ndcg_at_3
            value: 71.866
          - type: ndcg_at_5
            value: 72.225
          - type: precision_at_1
            value: 80
          - type: precision_at_10
            value: 75
          - type: precision_at_100
            value: 53.959999999999994
          - type: precision_at_1000
            value: 21.568
          - type: precision_at_3
            value: 76.667
          - type: precision_at_5
            value: 78
          - type: recall_at_1
            value: 0.21
          - type: recall_at_10
            value: 1.9189999999999998
          - type: recall_at_100
            value: 12.589
          - type: recall_at_1000
            value: 45.312000000000005
          - type: recall_at_3
            value: 0.61
          - type: recall_at_5
            value: 1.019
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (sqi-eng)
          type: mteb/tatoeba-bitext-mining
          config: sqi-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.10000000000001
          - type: f1
            value: 90.06
          - type: precision
            value: 89.17333333333333
          - type: recall
            value: 92.10000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fry-eng)
          type: mteb/tatoeba-bitext-mining
          config: fry-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 56.06936416184971
          - type: f1
            value: 50.87508028259473
          - type: precision
            value: 48.97398843930635
          - type: recall
            value: 56.06936416184971
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kur-eng)
          type: mteb/tatoeba-bitext-mining
          config: kur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 57.3170731707317
          - type: f1
            value: 52.96080139372822
          - type: precision
            value: 51.67861124382864
          - type: recall
            value: 57.3170731707317
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tur-eng)
          type: mteb/tatoeba-bitext-mining
          config: tur-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.3
          - type: f1
            value: 92.67333333333333
          - type: precision
            value: 91.90833333333333
          - type: recall
            value: 94.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (deu-eng)
          type: mteb/tatoeba-bitext-mining
          config: deu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.7
          - type: f1
            value: 97.07333333333332
          - type: precision
            value: 96.79500000000002
          - type: recall
            value: 97.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nld-eng)
          type: mteb/tatoeba-bitext-mining
          config: nld-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.69999999999999
          - type: f1
            value: 93.2
          - type: precision
            value: 92.48333333333333
          - type: recall
            value: 94.69999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ron-eng)
          type: mteb/tatoeba-bitext-mining
          config: ron-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.9
          - type: f1
            value: 91.26666666666667
          - type: precision
            value: 90.59444444444445
          - type: recall
            value: 92.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ang-eng)
          type: mteb/tatoeba-bitext-mining
          config: ang-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 34.32835820895522
          - type: f1
            value: 29.074180380150533
          - type: precision
            value: 28.068207322920596
          - type: recall
            value: 34.32835820895522
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ido-eng)
          type: mteb/tatoeba-bitext-mining
          config: ido-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.5
          - type: f1
            value: 74.3945115995116
          - type: precision
            value: 72.82967843459222
          - type: recall
            value: 78.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (jav-eng)
          type: mteb/tatoeba-bitext-mining
          config: jav-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 66.34146341463415
          - type: f1
            value: 61.2469400518181
          - type: precision
            value: 59.63977756660683
          - type: recall
            value: 66.34146341463415
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (isl-eng)
          type: mteb/tatoeba-bitext-mining
          config: isl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 80.9
          - type: f1
            value: 76.90349206349207
          - type: precision
            value: 75.32921568627451
          - type: recall
            value: 80.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (slv-eng)
          type: mteb/tatoeba-bitext-mining
          config: slv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 84.93317132442284
          - type: f1
            value: 81.92519105034295
          - type: precision
            value: 80.71283920615635
          - type: recall
            value: 84.93317132442284
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cym-eng)
          type: mteb/tatoeba-bitext-mining
          config: cym-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 71.1304347826087
          - type: f1
            value: 65.22394755003451
          - type: precision
            value: 62.912422360248435
          - type: recall
            value: 71.1304347826087
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kaz-eng)
          type: mteb/tatoeba-bitext-mining
          config: kaz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.82608695652173
          - type: f1
            value: 75.55693581780538
          - type: precision
            value: 73.79420289855072
          - type: recall
            value: 79.82608695652173
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (est-eng)
          type: mteb/tatoeba-bitext-mining
          config: est-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 74
          - type: f1
            value: 70.51022222222223
          - type: precision
            value: 69.29673599347512
          - type: recall
            value: 74
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (heb-eng)
          type: mteb/tatoeba-bitext-mining
          config: heb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.7
          - type: f1
            value: 74.14238095238095
          - type: precision
            value: 72.27214285714285
          - type: recall
            value: 78.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gla-eng)
          type: mteb/tatoeba-bitext-mining
          config: gla-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 48.97466827503016
          - type: f1
            value: 43.080330405420874
          - type: precision
            value: 41.36505499593557
          - type: recall
            value: 48.97466827503016
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mar-eng)
          type: mteb/tatoeba-bitext-mining
          config: mar-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.60000000000001
          - type: f1
            value: 86.62333333333333
          - type: precision
            value: 85.225
          - type: recall
            value: 89.60000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lat-eng)
          type: mteb/tatoeba-bitext-mining
          config: lat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 45.2
          - type: f1
            value: 39.5761253006253
          - type: precision
            value: 37.991358436312
          - type: recall
            value: 45.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bel-eng)
          type: mteb/tatoeba-bitext-mining
          config: bel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.5
          - type: f1
            value: 86.70333333333333
          - type: precision
            value: 85.53166666666667
          - type: recall
            value: 89.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pms-eng)
          type: mteb/tatoeba-bitext-mining
          config: pms-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 50.095238095238095
          - type: f1
            value: 44.60650460650461
          - type: precision
            value: 42.774116796477045
          - type: recall
            value: 50.095238095238095
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gle-eng)
          type: mteb/tatoeba-bitext-mining
          config: gle-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 63.4
          - type: f1
            value: 58.35967261904762
          - type: precision
            value: 56.54857142857143
          - type: recall
            value: 63.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pes-eng)
          type: mteb/tatoeba-bitext-mining
          config: pes-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.2
          - type: f1
            value: 87.075
          - type: precision
            value: 86.12095238095239
          - type: recall
            value: 89.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nob-eng)
          type: mteb/tatoeba-bitext-mining
          config: nob-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96.8
          - type: f1
            value: 95.90333333333334
          - type: precision
            value: 95.50833333333333
          - type: recall
            value: 96.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bul-eng)
          type: mteb/tatoeba-bitext-mining
          config: bul-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.9
          - type: f1
            value: 88.6288888888889
          - type: precision
            value: 87.61607142857142
          - type: recall
            value: 90.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cbk-eng)
          type: mteb/tatoeba-bitext-mining
          config: cbk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 65.2
          - type: f1
            value: 60.54377630539395
          - type: precision
            value: 58.89434482711381
          - type: recall
            value: 65.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hun-eng)
          type: mteb/tatoeba-bitext-mining
          config: hun-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87
          - type: f1
            value: 84.32412698412699
          - type: precision
            value: 83.25527777777778
          - type: recall
            value: 87
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (uig-eng)
          type: mteb/tatoeba-bitext-mining
          config: uig-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 68.7
          - type: f1
            value: 63.07883541295306
          - type: precision
            value: 61.06117424242426
          - type: recall
            value: 68.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (rus-eng)
          type: mteb/tatoeba-bitext-mining
          config: rus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.7
          - type: f1
            value: 91.78333333333335
          - type: precision
            value: 90.86666666666667
          - type: recall
            value: 93.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (spa-eng)
          type: mteb/tatoeba-bitext-mining
          config: spa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.7
          - type: f1
            value: 96.96666666666667
          - type: precision
            value: 96.61666666666667
          - type: recall
            value: 97.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hye-eng)
          type: mteb/tatoeba-bitext-mining
          config: hye-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.27493261455525
          - type: f1
            value: 85.90745732255168
          - type: precision
            value: 84.91389637616052
          - type: recall
            value: 88.27493261455525
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tel-eng)
          type: mteb/tatoeba-bitext-mining
          config: tel-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.5982905982906
          - type: f1
            value: 88.4900284900285
          - type: precision
            value: 87.57122507122507
          - type: recall
            value: 90.5982905982906
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (afr-eng)
          type: mteb/tatoeba-bitext-mining
          config: afr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 89.5
          - type: f1
            value: 86.90769841269842
          - type: precision
            value: 85.80178571428571
          - type: recall
            value: 89.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mon-eng)
          type: mteb/tatoeba-bitext-mining
          config: mon-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 82.5
          - type: f1
            value: 78.36796536796538
          - type: precision
            value: 76.82196969696969
          - type: recall
            value: 82.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (arz-eng)
          type: mteb/tatoeba-bitext-mining
          config: arz-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 71.48846960167715
          - type: f1
            value: 66.78771089148448
          - type: precision
            value: 64.98302885095339
          - type: recall
            value: 71.48846960167715
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hrv-eng)
          type: mteb/tatoeba-bitext-mining
          config: hrv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.1
          - type: f1
            value: 92.50333333333333
          - type: precision
            value: 91.77499999999999
          - type: recall
            value: 94.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nov-eng)
          type: mteb/tatoeba-bitext-mining
          config: nov-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 71.20622568093385
          - type: f1
            value: 66.83278891450098
          - type: precision
            value: 65.35065777283677
          - type: recall
            value: 71.20622568093385
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (gsw-eng)
          type: mteb/tatoeba-bitext-mining
          config: gsw-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 48.717948717948715
          - type: f1
            value: 43.53146853146853
          - type: precision
            value: 42.04721204721204
          - type: recall
            value: 48.717948717948715
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nds-eng)
          type: mteb/tatoeba-bitext-mining
          config: nds-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 58.5
          - type: f1
            value: 53.8564991863928
          - type: precision
            value: 52.40329436122275
          - type: recall
            value: 58.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ukr-eng)
          type: mteb/tatoeba-bitext-mining
          config: ukr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 90.8
          - type: f1
            value: 88.29
          - type: precision
            value: 87.09166666666667
          - type: recall
            value: 90.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (uzb-eng)
          type: mteb/tatoeba-bitext-mining
          config: uzb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 67.28971962616822
          - type: f1
            value: 62.63425307817832
          - type: precision
            value: 60.98065939771546
          - type: recall
            value: 67.28971962616822
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lit-eng)
          type: mteb/tatoeba-bitext-mining
          config: lit-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 78.7
          - type: f1
            value: 75.5264472455649
          - type: precision
            value: 74.38205086580086
          - type: recall
            value: 78.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ina-eng)
          type: mteb/tatoeba-bitext-mining
          config: ina-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.7
          - type: f1
            value: 86.10809523809525
          - type: precision
            value: 85.07602564102565
          - type: recall
            value: 88.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lfn-eng)
          type: mteb/tatoeba-bitext-mining
          config: lfn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 56.99999999999999
          - type: f1
            value: 52.85487521402737
          - type: precision
            value: 51.53985162713104
          - type: recall
            value: 56.99999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (zsm-eng)
          type: mteb/tatoeba-bitext-mining
          config: zsm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94
          - type: f1
            value: 92.45333333333333
          - type: precision
            value: 91.79166666666667
          - type: recall
            value: 94
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ita-eng)
          type: mteb/tatoeba-bitext-mining
          config: ita-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.30000000000001
          - type: f1
            value: 90.61333333333333
          - type: precision
            value: 89.83333333333331
          - type: recall
            value: 92.30000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cmn-eng)
          type: mteb/tatoeba-bitext-mining
          config: cmn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.69999999999999
          - type: f1
            value: 93.34555555555555
          - type: precision
            value: 92.75416666666668
          - type: recall
            value: 94.69999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (lvs-eng)
          type: mteb/tatoeba-bitext-mining
          config: lvs-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 80.2
          - type: f1
            value: 76.6563035113035
          - type: precision
            value: 75.3014652014652
          - type: recall
            value: 80.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (glg-eng)
          type: mteb/tatoeba-bitext-mining
          config: glg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 84.7
          - type: f1
            value: 82.78689263765207
          - type: precision
            value: 82.06705086580087
          - type: recall
            value: 84.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ceb-eng)
          type: mteb/tatoeba-bitext-mining
          config: ceb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 50.33333333333333
          - type: f1
            value: 45.461523661523664
          - type: precision
            value: 43.93545574795575
          - type: recall
            value: 50.33333333333333
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bre-eng)
          type: mteb/tatoeba-bitext-mining
          config: bre-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.6000000000000005
          - type: f1
            value: 5.442121400446441
          - type: precision
            value: 5.146630385487529
          - type: recall
            value: 6.6000000000000005
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ben-eng)
          type: mteb/tatoeba-bitext-mining
          config: ben-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85
          - type: f1
            value: 81.04666666666667
          - type: precision
            value: 79.25
          - type: recall
            value: 85
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swg-eng)
          type: mteb/tatoeba-bitext-mining
          config: swg-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 47.32142857142857
          - type: f1
            value: 42.333333333333336
          - type: precision
            value: 40.69196428571429
          - type: recall
            value: 47.32142857142857
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (arq-eng)
          type: mteb/tatoeba-bitext-mining
          config: arq-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 30.735455543358945
          - type: f1
            value: 26.73616790022338
          - type: precision
            value: 25.397823220451283
          - type: recall
            value: 30.735455543358945
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kab-eng)
          type: mteb/tatoeba-bitext-mining
          config: kab-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 25.1
          - type: f1
            value: 21.975989896371022
          - type: precision
            value: 21.059885632257203
          - type: recall
            value: 25.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fra-eng)
          type: mteb/tatoeba-bitext-mining
          config: fra-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.3
          - type: f1
            value: 92.75666666666666
          - type: precision
            value: 92.06166666666665
          - type: recall
            value: 94.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (por-eng)
          type: mteb/tatoeba-bitext-mining
          config: por-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.1
          - type: f1
            value: 92.74
          - type: precision
            value: 92.09166666666667
          - type: recall
            value: 94.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tat-eng)
          type: mteb/tatoeba-bitext-mining
          config: tat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 71.3
          - type: f1
            value: 66.922442002442
          - type: precision
            value: 65.38249567099568
          - type: recall
            value: 71.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (oci-eng)
          type: mteb/tatoeba-bitext-mining
          config: oci-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 40.300000000000004
          - type: f1
            value: 35.78682789299971
          - type: precision
            value: 34.66425128716588
          - type: recall
            value: 40.300000000000004
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pol-eng)
          type: mteb/tatoeba-bitext-mining
          config: pol-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 96
          - type: f1
            value: 94.82333333333334
          - type: precision
            value: 94.27833333333334
          - type: recall
            value: 96
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (war-eng)
          type: mteb/tatoeba-bitext-mining
          config: war-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 51.1
          - type: f1
            value: 47.179074753133584
          - type: precision
            value: 46.06461044702424
          - type: recall
            value: 51.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (aze-eng)
          type: mteb/tatoeba-bitext-mining
          config: aze-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 87.7
          - type: f1
            value: 84.71
          - type: precision
            value: 83.46166666666667
          - type: recall
            value: 87.7
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (vie-eng)
          type: mteb/tatoeba-bitext-mining
          config: vie-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.8
          - type: f1
            value: 94.68333333333334
          - type: precision
            value: 94.13333333333334
          - type: recall
            value: 95.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (nno-eng)
          type: mteb/tatoeba-bitext-mining
          config: nno-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.39999999999999
          - type: f1
            value: 82.5577380952381
          - type: precision
            value: 81.36833333333334
          - type: recall
            value: 85.39999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cha-eng)
          type: mteb/tatoeba-bitext-mining
          config: cha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 21.16788321167883
          - type: f1
            value: 16.948865627297987
          - type: precision
            value: 15.971932568647897
          - type: recall
            value: 21.16788321167883
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mhr-eng)
          type: mteb/tatoeba-bitext-mining
          config: mhr-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.9
          - type: f1
            value: 5.515526831658907
          - type: precision
            value: 5.141966366966367
          - type: recall
            value: 6.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dan-eng)
          type: mteb/tatoeba-bitext-mining
          config: dan-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.39666666666668
          - type: precision
            value: 90.58666666666667
          - type: recall
            value: 93.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ell-eng)
          type: mteb/tatoeba-bitext-mining
          config: ell-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.2
          - type: f1
            value: 89.95666666666666
          - type: precision
            value: 88.92833333333333
          - type: recall
            value: 92.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (amh-eng)
          type: mteb/tatoeba-bitext-mining
          config: amh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.76190476190477
          - type: f1
            value: 74.93386243386244
          - type: precision
            value: 73.11011904761904
          - type: recall
            value: 79.76190476190477
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (pam-eng)
          type: mteb/tatoeba-bitext-mining
          config: pam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 8.799999999999999
          - type: f1
            value: 6.921439712248537
          - type: precision
            value: 6.489885109680683
          - type: recall
            value: 8.799999999999999
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hsb-eng)
          type: mteb/tatoeba-bitext-mining
          config: hsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 45.75569358178054
          - type: f1
            value: 40.34699501312631
          - type: precision
            value: 38.57886764719063
          - type: recall
            value: 45.75569358178054
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (srp-eng)
          type: mteb/tatoeba-bitext-mining
          config: srp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.4
          - type: f1
            value: 89.08333333333333
          - type: precision
            value: 88.01666666666668
          - type: recall
            value: 91.4
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (epo-eng)
          type: mteb/tatoeba-bitext-mining
          config: epo-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.60000000000001
          - type: f1
            value: 92.06690476190477
          - type: precision
            value: 91.45095238095239
          - type: recall
            value: 93.60000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kzj-eng)
          type: mteb/tatoeba-bitext-mining
          config: kzj-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 7.5
          - type: f1
            value: 6.200363129378736
          - type: precision
            value: 5.89115314822466
          - type: recall
            value: 7.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (awa-eng)
          type: mteb/tatoeba-bitext-mining
          config: awa-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 73.59307359307358
          - type: f1
            value: 68.38933553219267
          - type: precision
            value: 66.62698412698413
          - type: recall
            value: 73.59307359307358
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fao-eng)
          type: mteb/tatoeba-bitext-mining
          config: fao-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 69.8473282442748
          - type: f1
            value: 64.72373682297346
          - type: precision
            value: 62.82834214131924
          - type: recall
            value: 69.8473282442748
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mal-eng)
          type: mteb/tatoeba-bitext-mining
          config: mal-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 97.5254730713246
          - type: f1
            value: 96.72489082969432
          - type: precision
            value: 96.33672974284326
          - type: recall
            value: 97.5254730713246
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ile-eng)
          type: mteb/tatoeba-bitext-mining
          config: ile-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 75.6
          - type: f1
            value: 72.42746031746033
          - type: precision
            value: 71.14036630036631
          - type: recall
            value: 75.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (bos-eng)
          type: mteb/tatoeba-bitext-mining
          config: bos-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.24293785310734
          - type: f1
            value: 88.86064030131826
          - type: precision
            value: 87.73540489642184
          - type: recall
            value: 91.24293785310734
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cor-eng)
          type: mteb/tatoeba-bitext-mining
          config: cor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.2
          - type: f1
            value: 4.383083659794954
          - type: precision
            value: 4.027861324289673
          - type: recall
            value: 6.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (cat-eng)
          type: mteb/tatoeba-bitext-mining
          config: cat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.8
          - type: f1
            value: 84.09428571428572
          - type: precision
            value: 83.00333333333333
          - type: recall
            value: 86.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (eus-eng)
          type: mteb/tatoeba-bitext-mining
          config: eus-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 60.699999999999996
          - type: f1
            value: 56.1584972394755
          - type: precision
            value: 54.713456330903135
          - type: recall
            value: 60.699999999999996
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (yue-eng)
          type: mteb/tatoeba-bitext-mining
          config: yue-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 84.2
          - type: f1
            value: 80.66190476190475
          - type: precision
            value: 79.19690476190476
          - type: recall
            value: 84.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swe-eng)
          type: mteb/tatoeba-bitext-mining
          config: swe-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 93.2
          - type: f1
            value: 91.33
          - type: precision
            value: 90.45
          - type: recall
            value: 93.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dtp-eng)
          type: mteb/tatoeba-bitext-mining
          config: dtp-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 6.3
          - type: f1
            value: 5.126828976748276
          - type: precision
            value: 4.853614328966668
          - type: recall
            value: 6.3
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kat-eng)
          type: mteb/tatoeba-bitext-mining
          config: kat-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 81.76943699731903
          - type: f1
            value: 77.82873739308057
          - type: precision
            value: 76.27622452019234
          - type: recall
            value: 81.76943699731903
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (jpn-eng)
          type: mteb/tatoeba-bitext-mining
          config: jpn-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.30000000000001
          - type: f1
            value: 90.29666666666665
          - type: precision
            value: 89.40333333333334
          - type: recall
            value: 92.30000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (csb-eng)
          type: mteb/tatoeba-bitext-mining
          config: csb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 29.249011857707508
          - type: f1
            value: 24.561866096392947
          - type: precision
            value: 23.356583740215456
          - type: recall
            value: 29.249011857707508
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (xho-eng)
          type: mteb/tatoeba-bitext-mining
          config: xho-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 77.46478873239437
          - type: f1
            value: 73.23943661971832
          - type: precision
            value: 71.66666666666667
          - type: recall
            value: 77.46478873239437
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (orv-eng)
          type: mteb/tatoeba-bitext-mining
          config: orv-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 20.35928143712575
          - type: f1
            value: 15.997867865075824
          - type: precision
            value: 14.882104658301346
          - type: recall
            value: 20.35928143712575
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ind-eng)
          type: mteb/tatoeba-bitext-mining
          config: ind-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 92.2
          - type: f1
            value: 90.25999999999999
          - type: precision
            value: 89.45333333333335
          - type: recall
            value: 92.2
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tuk-eng)
          type: mteb/tatoeba-bitext-mining
          config: tuk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 23.15270935960591
          - type: f1
            value: 19.65673625772148
          - type: precision
            value: 18.793705293464992
          - type: recall
            value: 23.15270935960591
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (max-eng)
          type: mteb/tatoeba-bitext-mining
          config: max-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 59.154929577464785
          - type: f1
            value: 52.3868463305083
          - type: precision
            value: 50.14938113529662
          - type: recall
            value: 59.154929577464785
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (swh-eng)
          type: mteb/tatoeba-bitext-mining
          config: swh-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 70.51282051282051
          - type: f1
            value: 66.8089133089133
          - type: precision
            value: 65.37645687645687
          - type: recall
            value: 70.51282051282051
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (hin-eng)
          type: mteb/tatoeba-bitext-mining
          config: hin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 94.6
          - type: f1
            value: 93
          - type: precision
            value: 92.23333333333333
          - type: recall
            value: 94.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (dsb-eng)
          type: mteb/tatoeba-bitext-mining
          config: dsb-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 38.62212943632568
          - type: f1
            value: 34.3278276962583
          - type: precision
            value: 33.07646935732408
          - type: recall
            value: 38.62212943632568
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ber-eng)
          type: mteb/tatoeba-bitext-mining
          config: ber-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 28.1
          - type: f1
            value: 23.579609223054604
          - type: precision
            value: 22.39622774921555
          - type: recall
            value: 28.1
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tam-eng)
          type: mteb/tatoeba-bitext-mining
          config: tam-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.27361563517914
          - type: f1
            value: 85.12486427795874
          - type: precision
            value: 83.71335504885994
          - type: recall
            value: 88.27361563517914
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (slk-eng)
          type: mteb/tatoeba-bitext-mining
          config: slk-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.6
          - type: f1
            value: 86.39928571428571
          - type: precision
            value: 85.4947557997558
          - type: recall
            value: 88.6
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tgl-eng)
          type: mteb/tatoeba-bitext-mining
          config: tgl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.5
          - type: f1
            value: 83.77952380952381
          - type: precision
            value: 82.67602564102565
          - type: recall
            value: 86.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ast-eng)
          type: mteb/tatoeba-bitext-mining
          config: ast-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 79.52755905511812
          - type: f1
            value: 75.3055868016498
          - type: precision
            value: 73.81889763779527
          - type: recall
            value: 79.52755905511812
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (mkd-eng)
          type: mteb/tatoeba-bitext-mining
          config: mkd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 77.9
          - type: f1
            value: 73.76261904761905
          - type: precision
            value: 72.11670995670995
          - type: recall
            value: 77.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (khm-eng)
          type: mteb/tatoeba-bitext-mining
          config: khm-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 53.8781163434903
          - type: f1
            value: 47.25804051288816
          - type: precision
            value: 45.0603482390186
          - type: recall
            value: 53.8781163434903
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ces-eng)
          type: mteb/tatoeba-bitext-mining
          config: ces-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 91.10000000000001
          - type: f1
            value: 88.88
          - type: precision
            value: 87.96333333333334
          - type: recall
            value: 91.10000000000001
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tzl-eng)
          type: mteb/tatoeba-bitext-mining
          config: tzl-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 38.46153846153847
          - type: f1
            value: 34.43978243978244
          - type: precision
            value: 33.429487179487175
          - type: recall
            value: 38.46153846153847
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (urd-eng)
          type: mteb/tatoeba-bitext-mining
          config: urd-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.9
          - type: f1
            value: 86.19888888888887
          - type: precision
            value: 85.07440476190476
          - type: recall
            value: 88.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (ara-eng)
          type: mteb/tatoeba-bitext-mining
          config: ara-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 85.9
          - type: f1
            value: 82.58857142857143
          - type: precision
            value: 81.15666666666667
          - type: recall
            value: 85.9
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (kor-eng)
          type: mteb/tatoeba-bitext-mining
          config: kor-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 86.8
          - type: f1
            value: 83.36999999999999
          - type: precision
            value: 81.86833333333333
          - type: recall
            value: 86.8
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (yid-eng)
          type: mteb/tatoeba-bitext-mining
          config: yid-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 68.51415094339622
          - type: f1
            value: 63.195000099481234
          - type: precision
            value: 61.394033442972116
          - type: recall
            value: 68.51415094339622
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (fin-eng)
          type: mteb/tatoeba-bitext-mining
          config: fin-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 88.5
          - type: f1
            value: 86.14603174603175
          - type: precision
            value: 85.1162037037037
          - type: recall
            value: 88.5
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (tha-eng)
          type: mteb/tatoeba-bitext-mining
          config: tha-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 95.62043795620438
          - type: f1
            value: 94.40389294403892
          - type: precision
            value: 93.7956204379562
          - type: recall
            value: 95.62043795620438
      - task:
          type: BitextMining
        dataset:
          name: MTEB Tatoeba (wuu-eng)
          type: mteb/tatoeba-bitext-mining
          config: wuu-eng
          split: test
          revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
        metrics:
          - type: accuracy
            value: 81.8
          - type: f1
            value: 78.6532178932179
          - type: precision
            value: 77.46348795840176
          - type: recall
            value: 81.8
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: webis-touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.603
          - type: map_at_10
            value: 8.5
          - type: map_at_100
            value: 12.985
          - type: map_at_1000
            value: 14.466999999999999
          - type: map_at_3
            value: 4.859999999999999
          - type: map_at_5
            value: 5.817
          - type: mrr_at_1
            value: 28.571
          - type: mrr_at_10
            value: 42.331
          - type: mrr_at_100
            value: 43.592999999999996
          - type: mrr_at_1000
            value: 43.592999999999996
          - type: mrr_at_3
            value: 38.435
          - type: mrr_at_5
            value: 39.966
          - type: ndcg_at_1
            value: 26.531
          - type: ndcg_at_10
            value: 21.353
          - type: ndcg_at_100
            value: 31.087999999999997
          - type: ndcg_at_1000
            value: 43.163000000000004
          - type: ndcg_at_3
            value: 22.999
          - type: ndcg_at_5
            value: 21.451
          - type: precision_at_1
            value: 28.571
          - type: precision_at_10
            value: 19.387999999999998
          - type: precision_at_100
            value: 6.265
          - type: precision_at_1000
            value: 1.4160000000000001
          - type: precision_at_3
            value: 24.490000000000002
          - type: precision_at_5
            value: 21.224
          - type: recall_at_1
            value: 2.603
          - type: recall_at_10
            value: 14.474
          - type: recall_at_100
            value: 40.287
          - type: recall_at_1000
            value: 76.606
          - type: recall_at_3
            value: 5.978
          - type: recall_at_5
            value: 7.819
      - task:
          type: Classification
        dataset:
          name: MTEB ToxicConversationsClassification
          type: mteb/toxic_conversations_50k
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 69.7848
          - type: ap
            value: 13.661023167088224
          - type: f1
            value: 53.61686134460943
      - task:
          type: Classification
        dataset:
          name: MTEB TweetSentimentExtractionClassification
          type: mteb/tweet_sentiment_extraction
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 61.28183361629882
          - type: f1
            value: 61.55481034919965
      - task:
          type: Clustering
        dataset:
          name: MTEB TwentyNewsgroupsClustering
          type: mteb/twentynewsgroups-clustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 35.972128420092396
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterSemEval2015
          type: mteb/twittersemeval2015-pairclassification
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 85.59933241938367
          - type: cos_sim_ap
            value: 72.20760361208136
          - type: cos_sim_f1
            value: 66.4447731755424
          - type: cos_sim_precision
            value: 62.35539102267469
          - type: cos_sim_recall
            value: 71.10817941952506
          - type: dot_accuracy
            value: 78.98313166835548
          - type: dot_ap
            value: 44.492521645493795
          - type: dot_f1
            value: 45.814889336016094
          - type: dot_precision
            value: 37.02439024390244
          - type: dot_recall
            value: 60.07915567282321
          - type: euclidean_accuracy
            value: 85.3907134767837
          - type: euclidean_ap
            value: 71.53847289080343
          - type: euclidean_f1
            value: 65.95952206778834
          - type: euclidean_precision
            value: 61.31006346328196
          - type: euclidean_recall
            value: 71.37203166226914
          - type: manhattan_accuracy
            value: 85.40859510043511
          - type: manhattan_ap
            value: 71.49664104395515
          - type: manhattan_f1
            value: 65.98569969356485
          - type: manhattan_precision
            value: 63.928748144482924
          - type: manhattan_recall
            value: 68.17941952506597
          - type: max_accuracy
            value: 85.59933241938367
          - type: max_ap
            value: 72.20760361208136
          - type: max_f1
            value: 66.4447731755424
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterURLCorpus
          type: mteb/twitterurlcorpus-pairclassification
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 88.83261536073273
          - type: cos_sim_ap
            value: 85.48178133644264
          - type: cos_sim_f1
            value: 77.87816307403935
          - type: cos_sim_precision
            value: 75.88953021114926
          - type: cos_sim_recall
            value: 79.97382198952879
          - type: dot_accuracy
            value: 79.76287499514883
          - type: dot_ap
            value: 59.17438838475084
          - type: dot_f1
            value: 56.34566667855996
          - type: dot_precision
            value: 52.50349092359864
          - type: dot_recall
            value: 60.794579611949494
          - type: euclidean_accuracy
            value: 88.76857996662397
          - type: euclidean_ap
            value: 85.22764834359887
          - type: euclidean_f1
            value: 77.65379751543554
          - type: euclidean_precision
            value: 75.11152683839401
          - type: euclidean_recall
            value: 80.37419156144134
          - type: manhattan_accuracy
            value: 88.6987231730508
          - type: manhattan_ap
            value: 85.18907981724007
          - type: manhattan_f1
            value: 77.51967028849757
          - type: manhattan_precision
            value: 75.49992701795358
          - type: manhattan_recall
            value: 79.65044656606098
          - type: max_accuracy
            value: 88.83261536073273
          - type: max_ap
            value: 85.48178133644264
          - type: max_f1
            value: 77.87816307403935

multilingual-e5-base-mlx

This model was converted to MLX format from intfloat/multilingual-e5-base. Refer to the original model card for more details on the model.

Use with mlx

pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model mlx-community/multilingual-e5-base-mlx --prompt "My name is"