Felladrin commited on
Commit
72445a9
·
verified ·
1 Parent(s): a5cfc05

Upload modeling_phi3.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. modeling_phi3.py +1180 -0
modeling_phi3.py ADDED
@@ -0,0 +1,1180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """PyTorch Phi-3 model."""
17
+
18
+ from typing import Callable, List, Optional, Tuple, Union
19
+
20
+ import torch
21
+ from torch import nn
22
+
23
+ from transformers.activations import ACT2FN
24
+ from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
25
+ from transformers.generation import GenerationMixin
26
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
27
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
28
+ from transformers.modeling_outputs import (
29
+ BaseModelOutputWithPast,
30
+ CausalLMOutputWithPast,
31
+ SequenceClassifierOutputWithPast,
32
+ TokenClassifierOutput,
33
+ )
34
+ from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
35
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
36
+ from transformers.processing_utils import Unpack
37
+ from transformers.utils import (
38
+ LossKwargs,
39
+ add_code_sample_docstrings,
40
+ add_start_docstrings,
41
+ add_start_docstrings_to_model_forward,
42
+ logging,
43
+ replace_return_docstrings,
44
+ )
45
+ from transformers.utils.deprecation import deprecate_kwarg
46
+ from .configuration_phi3 import Phi3Config
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-mini-4k-instruct"
52
+ _CONFIG_FOR_DOC = "Phi3Config"
53
+
54
+
55
+ class Phi3MLP(nn.Module):
56
+ def __init__(self, config):
57
+ super().__init__()
58
+
59
+ self.config = config
60
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
61
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
62
+ self.activation_fn = ACT2FN[config.hidden_act]
63
+
64
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
65
+ up_states = self.gate_up_proj(hidden_states)
66
+
67
+ gate, up_states = up_states.chunk(2, dim=-1)
68
+ up_states = up_states * self.activation_fn(gate)
69
+
70
+ return self.down_proj(up_states)
71
+
72
+
73
+ def rotate_half(x):
74
+ """Rotates half the hidden dims of the input."""
75
+ x1 = x[..., : x.shape[-1] // 2]
76
+ x2 = x[..., x.shape[-1] // 2 :]
77
+ return torch.cat((-x2, x1), dim=-1)
78
+
79
+
80
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
81
+ """
82
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
83
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
84
+ """
85
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
86
+ if n_rep == 1:
87
+ return hidden_states
88
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
89
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
90
+
91
+
92
+ def eager_attention_forward(
93
+ module: nn.Module,
94
+ query: torch.Tensor,
95
+ key: torch.Tensor,
96
+ value: torch.Tensor,
97
+ attention_mask: Optional[torch.Tensor],
98
+ scaling: float,
99
+ dropout: float = 0.0,
100
+ **kwargs,
101
+ ):
102
+ key_states = repeat_kv(key, module.num_key_value_groups)
103
+ value_states = repeat_kv(value, module.num_key_value_groups)
104
+
105
+ attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
106
+ if attention_mask is not None:
107
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
108
+ attn_weights = attn_weights + causal_mask
109
+
110
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
111
+ attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
112
+ attn_output = torch.matmul(attn_weights, value_states)
113
+ attn_output = attn_output.transpose(1, 2).contiguous()
114
+
115
+ return attn_output, attn_weights
116
+
117
+
118
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
119
+ """Applies Rotary Position Embedding to the query and key tensors.
120
+
121
+ Args:
122
+ q (`torch.Tensor`): The query tensor.
123
+ k (`torch.Tensor`): The key tensor.
124
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
125
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
126
+ position_ids (`torch.Tensor`, *optional*):
127
+ Deprecated and unused.
128
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
129
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
130
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
131
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
132
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
133
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
134
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
135
+ Returns:
136
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
137
+ """
138
+ cos = cos.unsqueeze(unsqueeze_dim)
139
+ sin = sin.unsqueeze(unsqueeze_dim)
140
+
141
+ rotary_dim = cos.shape[-1]
142
+ q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
143
+ k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
144
+
145
+ q_embed = torch.cat([(q_rot * cos) + (rotate_half(q_rot) * sin), q_pass], dim=-1)
146
+ k_embed = torch.cat([(k_rot * cos) + (rotate_half(k_rot) * sin), k_pass], dim=-1)
147
+ return q_embed, k_embed
148
+
149
+
150
+ class Phi3Attention(nn.Module):
151
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
152
+
153
+ def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
154
+ super().__init__()
155
+ self.config = config
156
+ self.layer_idx = layer_idx
157
+ self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
158
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
159
+ self.num_key_value_heads = config.num_key_value_heads
160
+ self.scaling = self.head_dim**-0.5
161
+ self.attention_dropout = config.attention_dropout
162
+ self.is_causal = True
163
+
164
+ op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
165
+ self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
166
+ self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)
167
+
168
+ def forward(
169
+ self,
170
+ hidden_states: torch.Tensor,
171
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
172
+ attention_mask: Optional[torch.Tensor],
173
+ past_key_value: Optional[Cache] = None,
174
+ cache_position: Optional[torch.LongTensor] = None,
175
+ **kwargs: Unpack[FlashAttentionKwargs],
176
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
177
+ input_shape = hidden_states.shape[:-1]
178
+ hidden_shape = (*input_shape, -1, self.head_dim)
179
+
180
+ qkv = self.qkv_proj(hidden_states)
181
+ query_pos = self.config.num_attention_heads * self.head_dim
182
+ query_states = qkv[..., :query_pos]
183
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
184
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
185
+
186
+ query_states = query_states.view(hidden_shape).transpose(1, 2)
187
+ key_states = key_states.view(hidden_shape).transpose(1, 2)
188
+ value_states = value_states.view(hidden_shape).transpose(1, 2)
189
+
190
+ cos, sin = position_embeddings
191
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
192
+
193
+ if past_key_value is not None:
194
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
195
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
196
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
197
+
198
+ attention_interface: Callable = eager_attention_forward
199
+ if self.config._attn_implementation != "eager":
200
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
201
+ logger.warning_once(
202
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
203
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
204
+ )
205
+ else:
206
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
207
+
208
+ attn_output, attn_weights = attention_interface(
209
+ self,
210
+ query_states,
211
+ key_states,
212
+ value_states,
213
+ attention_mask,
214
+ dropout=0.0 if not self.training else self.attention_dropout,
215
+ scaling=self.scaling,
216
+ sliding_window=getattr(self.config, "sliding_window", None),
217
+ **kwargs,
218
+ )
219
+
220
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
221
+ attn_output = self.o_proj(attn_output)
222
+ return attn_output, attn_weights
223
+
224
+
225
+ class Phi3RMSNorm(nn.Module):
226
+ def __init__(self, hidden_size, eps=1e-6):
227
+ """
228
+ Phi3RMSNorm is equivalent to T5LayerNorm
229
+ """
230
+ super().__init__()
231
+ self.weight = nn.Parameter(torch.ones(hidden_size))
232
+ self.variance_epsilon = eps
233
+
234
+ def forward(self, hidden_states):
235
+ input_dtype = hidden_states.dtype
236
+ hidden_states = hidden_states.to(torch.float32)
237
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
238
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
239
+ return self.weight * hidden_states.to(input_dtype)
240
+
241
+ def extra_repr(self):
242
+ return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
243
+
244
+
245
+ class Phi3DecoderLayer(nn.Module):
246
+ def __init__(self, config: Phi3Config, layer_idx: int):
247
+ super().__init__()
248
+ self.hidden_size = config.hidden_size
249
+ self.self_attn = Phi3Attention(config=config, layer_idx=layer_idx)
250
+ self.mlp = Phi3MLP(config)
251
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
252
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
253
+ self.config = config
254
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
255
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
256
+
257
+ def forward(
258
+ self,
259
+ hidden_states: torch.Tensor,
260
+ attention_mask: Optional[torch.Tensor] = None,
261
+ position_ids: Optional[torch.LongTensor] = None,
262
+ past_key_value: Optional[Cache] = None,
263
+ output_attentions: Optional[bool] = False,
264
+ use_cache: Optional[bool] = False,
265
+ cache_position: Optional[torch.LongTensor] = None,
266
+ position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
267
+ **kwargs: Unpack[FlashAttentionKwargs],
268
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
269
+ """
270
+ Args:
271
+ hidden_states (`torch.FloatTensor`):
272
+ input to the layer of shape `(batch, seq_len, embed_dim)`
273
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
274
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
275
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
276
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
277
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
278
+ past_key_value (`Cache`, *optional*): cached past key and value projection states
279
+ output_attentions (`bool`, *optional*):
280
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
281
+ returned tensors for more detail.
282
+ use_cache (`bool`, *optional*):
283
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
284
+ (see `past_key_values`).
285
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
286
+ Indices depicting the position of the input sequence tokens in the sequence
287
+ kwargs (`dict`, *optional*):
288
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
289
+ into the model
290
+ """
291
+ residual = hidden_states
292
+
293
+ hidden_states = self.input_layernorm(hidden_states)
294
+
295
+ # Self Attention
296
+ hidden_states, self_attn_weights = self.self_attn(
297
+ hidden_states=hidden_states,
298
+ attention_mask=attention_mask,
299
+ position_ids=position_ids,
300
+ past_key_value=past_key_value,
301
+ output_attentions=output_attentions,
302
+ use_cache=use_cache,
303
+ cache_position=cache_position,
304
+ position_embeddings=position_embeddings,
305
+ **kwargs,
306
+ )
307
+ hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama
308
+
309
+ residual = hidden_states
310
+ hidden_states = self.post_attention_layernorm(hidden_states)
311
+ hidden_states = self.mlp(hidden_states)
312
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama
313
+
314
+ outputs = (hidden_states,)
315
+ if output_attentions:
316
+ outputs += (self_attn_weights,)
317
+
318
+ return outputs
319
+
320
+
321
+ class Phi3RotaryEmbedding(nn.Module):
322
+ def __init__(self, config: Phi3Config, device=None):
323
+ super().__init__()
324
+ # BC: "rope_type" was originally "type"
325
+ if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
326
+ self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
327
+ else:
328
+ self.rope_type = "default"
329
+ self.max_seq_len_cached = config.max_position_embeddings
330
+ self.original_max_seq_len = config.max_position_embeddings
331
+
332
+ self.config = config
333
+ self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
334
+
335
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
336
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
337
+ self.original_inv_freq = self.inv_freq
338
+
339
+ def _dynamic_frequency_update(self, position_ids, device):
340
+ """
341
+ dynamic RoPE layers should recompute `inv_freq` in the following situations:
342
+ 1 - growing beyond the cached sequence length (allow scaling)
343
+ 2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
344
+ """
345
+ seq_len = torch.max(position_ids) + 1
346
+ if seq_len > self.max_seq_len_cached: # growth
347
+ inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
348
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
349
+ self.max_seq_len_cached = seq_len
350
+
351
+ if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
352
+ # This .to() is needed if the model has been moved to a device after being initialized (because
353
+ # the buffer is automatically moved, but not the original copy)
354
+ self.original_inv_freq = self.original_inv_freq.to(device)
355
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
356
+ self.max_seq_len_cached = self.original_max_seq_len
357
+
358
+ @torch.no_grad()
359
+ def forward(self, x, position_ids):
360
+ if "dynamic" in self.rope_type:
361
+ self._dynamic_frequency_update(position_ids, device=x.device)
362
+ elif self.rope_type == "longrope":
363
+ self._longrope_frequency_update(position_ids, device=x.device)
364
+
365
+ # Core RoPE block
366
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
367
+ position_ids_expanded = position_ids[:, None, :].float()
368
+ # Force float32 (see https://github.com/huggingface/transformers/pull/29285)
369
+ device_type = x.device.type
370
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
371
+ with torch.autocast(device_type=device_type, enabled=False):
372
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
373
+ emb = torch.cat((freqs, freqs), dim=-1)
374
+ cos = emb.cos()
375
+ sin = emb.sin()
376
+
377
+ # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
378
+ cos = cos * self.attention_scaling
379
+ sin = sin * self.attention_scaling
380
+
381
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
382
+
383
+ def _longrope_frequency_update(self, position_ids, device):
384
+ """Longrope uses long factor if sequence is larger than original pretraining length, short otherwise."""
385
+ seq_len = torch.max(position_ids) + 1
386
+ if hasattr(self.config, "original_max_position_embeddings"):
387
+ original_max_position_embeddings = self.config.original_max_position_embeddings
388
+ else:
389
+ original_max_position_embeddings = self.config.max_position_embeddings
390
+ if seq_len > original_max_position_embeddings:
391
+ if not hasattr(self, "long_inv_freq"):
392
+ self.long_inv_freq, _ = self.rope_init_fn(
393
+ self.config, device, seq_len=original_max_position_embeddings + 1
394
+ )
395
+ self.register_buffer("inv_freq", self.long_inv_freq, persistent=False)
396
+ else:
397
+ # This .to() is needed if the model has been moved to a device after being initialized (because
398
+ # the buffer is automatically moved, but not the original copy)
399
+ self.original_inv_freq = self.original_inv_freq.to(device)
400
+ self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
401
+
402
+
403
+ PHI3_START_DOCSTRING = r"""
404
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
405
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
406
+ etc.)
407
+
408
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
409
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
410
+ and behavior.
411
+
412
+ Parameters:
413
+ config ([`Phi3Config`]):
414
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
415
+ load the weights associated with the model, only the configuration. Check out the
416
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
417
+ """
418
+
419
+
420
+ @add_start_docstrings(
421
+ "The bare Phi3 Model outputting raw hidden-states without any specific head on top.",
422
+ PHI3_START_DOCSTRING,
423
+ )
424
+ class Phi3PreTrainedModel(PreTrainedModel):
425
+ config_class = Phi3Config
426
+ base_model_prefix = "model"
427
+ supports_gradient_checkpointing = True
428
+ _no_split_modules = ["Phi3DecoderLayer"]
429
+ _skip_keys_device_placement = ["past_key_values"]
430
+ _supports_flash_attn_2 = True
431
+ _supports_sdpa = True
432
+ _supports_flex_attn = True
433
+ _supports_cache_class = True
434
+ _supports_quantized_cache = True
435
+ _supports_static_cache = True
436
+ _supports_attention_backend = True
437
+ _version = "0.0.5"
438
+
439
+ def _init_weights(self, module):
440
+ std = self.config.initializer_range
441
+ if isinstance(module, nn.Linear):
442
+ module.weight.data.normal_(mean=0.0, std=std)
443
+ if module.bias is not None:
444
+ module.bias.data.zero_()
445
+ elif isinstance(module, nn.Embedding):
446
+ module.weight.data.normal_(mean=0.0, std=std)
447
+ if module.padding_idx is not None:
448
+ module.weight.data[module.padding_idx].zero_()
449
+
450
+
451
+ PHI3_INPUTS_DOCSTRING = r"""
452
+ Args:
453
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
454
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
455
+ it.
456
+
457
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
458
+ [`PreTrainedTokenizer.__call__`] for details.
459
+
460
+ [What are input IDs?](../glossary#input-ids)
461
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
462
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
463
+
464
+ - 1 for tokens that are **not masked**,
465
+ - 0 for tokens that are **masked**.
466
+
467
+ [What are attention masks?](../glossary#attention-mask)
468
+
469
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
470
+ [`PreTrainedTokenizer.__call__`] for details.
471
+
472
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
473
+ `past_key_values`).
474
+
475
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
476
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
477
+ information on the default strategy.
478
+
479
+ - 1 indicates the head is **not masked**,
480
+ - 0 indicates the head is **masked**.
481
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
482
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
483
+ config.n_positions - 1]`.
484
+
485
+ [What are position IDs?](../glossary#position-ids)
486
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
487
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
488
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
489
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
490
+
491
+ Two formats are allowed:
492
+ - a [`~cache_utils.Cache`] instance, see our
493
+ [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
494
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
495
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
496
+ cache format.
497
+
498
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
499
+ legacy cache format will be returned.
500
+
501
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
502
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
503
+ of shape `(batch_size, sequence_length)`.
504
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
505
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
506
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
507
+ model's internal embedding lookup matrix.
508
+ use_cache (`bool`, *optional*):
509
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
510
+ `past_key_values`).
511
+ output_attentions (`bool`, *optional*):
512
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
513
+ tensors for more detail.
514
+ output_hidden_states (`bool`, *optional*):
515
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
516
+ more detail.
517
+ return_dict (`bool`, *optional*):
518
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
519
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
520
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
521
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
522
+ the complete sequence length.
523
+ """
524
+
525
+
526
+ @add_start_docstrings(
527
+ "The bare Phi3 Model outputting raw hidden-states without any specific head on top.",
528
+ PHI3_START_DOCSTRING,
529
+ )
530
+ class Phi3Model(Phi3PreTrainedModel):
531
+ """
532
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
533
+
534
+ Args:
535
+ config: Phi3Config
536
+ """
537
+
538
+ def __init__(self, config: Phi3Config):
539
+ super().__init__(config)
540
+ self.padding_idx = config.pad_token_id
541
+ self.vocab_size = config.vocab_size
542
+
543
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
544
+ self.layers = nn.ModuleList(
545
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
546
+ )
547
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
548
+ self.rotary_emb = Phi3RotaryEmbedding(config=config)
549
+ self.gradient_checkpointing = False
550
+
551
+ # Initialize weights and apply final processing
552
+ self.post_init()
553
+
554
+ def get_input_embeddings(self):
555
+ return self.embed_tokens
556
+
557
+ def set_input_embeddings(self, value):
558
+ self.embed_tokens = value
559
+
560
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
561
+ def forward(
562
+ self,
563
+ input_ids: torch.LongTensor = None,
564
+ attention_mask: Optional[torch.Tensor] = None,
565
+ position_ids: Optional[torch.LongTensor] = None,
566
+ past_key_values: Optional[Cache] = None,
567
+ inputs_embeds: Optional[torch.FloatTensor] = None,
568
+ use_cache: Optional[bool] = None,
569
+ output_attentions: Optional[bool] = None,
570
+ output_hidden_states: Optional[bool] = None,
571
+ return_dict: Optional[bool] = None,
572
+ cache_position: Optional[torch.LongTensor] = None,
573
+ **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
574
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
575
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
576
+ output_hidden_states = (
577
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
578
+ )
579
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
580
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
581
+
582
+ if (input_ids is None) ^ (inputs_embeds is not None):
583
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
584
+
585
+ if self.gradient_checkpointing and self.training and use_cache:
586
+ logger.warning_once(
587
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
588
+ )
589
+ use_cache = False
590
+
591
+ if inputs_embeds is None:
592
+ inputs_embeds = self.embed_tokens(input_ids)
593
+
594
+ if use_cache and past_key_values is None:
595
+ past_key_values = DynamicCache()
596
+
597
+ if cache_position is None:
598
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
599
+ cache_position = torch.arange(
600
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
601
+ )
602
+
603
+ if position_ids is None:
604
+ position_ids = cache_position.unsqueeze(0)
605
+
606
+ causal_mask = self._update_causal_mask(
607
+ attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
608
+ )
609
+
610
+ hidden_states = inputs_embeds
611
+
612
+ # create position embeddings to be shared across the decoder layers
613
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
614
+
615
+ # decoder layers
616
+ all_hidden_states = () if output_hidden_states else None
617
+ all_self_attns = () if output_attentions else None
618
+
619
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
620
+ if output_hidden_states:
621
+ all_hidden_states += (hidden_states,)
622
+
623
+ if self.gradient_checkpointing and self.training:
624
+ layer_outputs = self._gradient_checkpointing_func(
625
+ decoder_layer.__call__,
626
+ hidden_states,
627
+ causal_mask,
628
+ position_ids,
629
+ past_key_values,
630
+ output_attentions,
631
+ use_cache,
632
+ cache_position,
633
+ position_embeddings,
634
+ )
635
+ else:
636
+ layer_outputs = decoder_layer(
637
+ hidden_states,
638
+ attention_mask=causal_mask,
639
+ position_ids=position_ids,
640
+ past_key_value=past_key_values,
641
+ output_attentions=output_attentions,
642
+ use_cache=use_cache,
643
+ cache_position=cache_position,
644
+ position_embeddings=position_embeddings,
645
+ **flash_attn_kwargs,
646
+ )
647
+
648
+ hidden_states = layer_outputs[0]
649
+
650
+ if output_attentions:
651
+ all_self_attns += (layer_outputs[1],)
652
+
653
+ hidden_states = self.norm(hidden_states)
654
+
655
+ # add hidden states from the last decoder layer
656
+ if output_hidden_states:
657
+ all_hidden_states += (hidden_states,)
658
+
659
+ output = BaseModelOutputWithPast(
660
+ last_hidden_state=hidden_states,
661
+ past_key_values=past_key_values if use_cache else None,
662
+ hidden_states=all_hidden_states,
663
+ attentions=all_self_attns,
664
+ )
665
+ return output if return_dict else output.to_tuple()
666
+
667
+ def _update_causal_mask(
668
+ self,
669
+ attention_mask: torch.Tensor,
670
+ input_tensor: torch.Tensor,
671
+ cache_position: torch.Tensor,
672
+ past_key_values: Cache,
673
+ output_attentions: bool,
674
+ ):
675
+ if self.config._attn_implementation == "flash_attention_2":
676
+ if attention_mask is not None and past_key_values is not None:
677
+ is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
678
+ if is_padding_right:
679
+ raise ValueError(
680
+ "You are attempting to perform batched generation with padding_side='right'"
681
+ " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
682
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
683
+ )
684
+ if attention_mask is not None and 0.0 in attention_mask:
685
+ return attention_mask
686
+ return None
687
+
688
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
689
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
690
+ # to infer the attention mask.
691
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
692
+ using_static_cache = isinstance(past_key_values, StaticCache)
693
+ using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
694
+
695
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
696
+ if (
697
+ self.config._attn_implementation == "sdpa"
698
+ and not (using_static_cache or using_sliding_window_cache)
699
+ and not output_attentions
700
+ ):
701
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
702
+ attention_mask,
703
+ inputs_embeds=input_tensor,
704
+ past_key_values_length=past_seen_tokens,
705
+ sliding_window=self.config.sliding_window,
706
+ is_training=self.training,
707
+ ):
708
+ return None
709
+
710
+ dtype, device = input_tensor.dtype, input_tensor.device
711
+ min_dtype = torch.finfo(dtype).min
712
+ sequence_length = input_tensor.shape[1]
713
+ # SlidingWindowCache or StaticCache
714
+ if using_sliding_window_cache or using_static_cache:
715
+ target_length = past_key_values.get_max_cache_shape()
716
+ # DynamicCache or no cache
717
+ else:
718
+ target_length = (
719
+ attention_mask.shape[-1]
720
+ if isinstance(attention_mask, torch.Tensor)
721
+ else past_seen_tokens + sequence_length + 1
722
+ )
723
+
724
+ # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
725
+ causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
726
+ attention_mask,
727
+ sequence_length=sequence_length,
728
+ target_length=target_length,
729
+ dtype=dtype,
730
+ device=device,
731
+ cache_position=cache_position,
732
+ batch_size=input_tensor.shape[0],
733
+ config=self.config,
734
+ past_key_values=past_key_values,
735
+ )
736
+
737
+ if (
738
+ self.config._attn_implementation == "sdpa"
739
+ and attention_mask is not None
740
+ and attention_mask.device.type in ["cuda", "xpu"]
741
+ and not output_attentions
742
+ ):
743
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
744
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
745
+ # Details: https://github.com/pytorch/pytorch/issues/110213
746
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
747
+
748
+ return causal_mask
749
+
750
+ @staticmethod
751
+ def _prepare_4d_causal_attention_mask_with_cache_position(
752
+ attention_mask: torch.Tensor,
753
+ sequence_length: int,
754
+ target_length: int,
755
+ dtype: torch.dtype,
756
+ device: torch.device,
757
+ cache_position: torch.Tensor,
758
+ batch_size: int,
759
+ config: Phi3Config,
760
+ past_key_values: Cache,
761
+ ):
762
+ """
763
+ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
764
+ `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
765
+
766
+ Args:
767
+ attention_mask (`torch.Tensor`):
768
+ A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
769
+ sequence_length (`int`):
770
+ The sequence length being processed.
771
+ target_length (`int`):
772
+ The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
773
+ dtype (`torch.dtype`):
774
+ The dtype to use for the 4D attention mask.
775
+ device (`torch.device`):
776
+ The device to plcae the 4D attention mask on.
777
+ cache_position (`torch.Tensor`):
778
+ Indices depicting the position of the input sequence tokens in the sequence.
779
+ batch_size (`torch.Tensor`):
780
+ Batch size.
781
+ config (`Phi3Config`):
782
+ The model's configuration class
783
+ past_key_values (`Cache`):
784
+ The cache class that is being used currently to generate
785
+ """
786
+ if attention_mask is not None and attention_mask.dim() == 4:
787
+ # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
788
+ causal_mask = attention_mask
789
+ else:
790
+ min_dtype = torch.finfo(dtype).min
791
+ causal_mask = torch.full(
792
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
793
+ )
794
+ diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
795
+ if config.sliding_window is not None:
796
+ # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
797
+ # the check is needed to verify is current checkpoint was trained with sliding window or not
798
+ if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
799
+ sliding_attend_mask = torch.arange(target_length, device=device) <= (
800
+ cache_position.reshape(-1, 1) - config.sliding_window
801
+ )
802
+ diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
803
+ causal_mask *= diagonal_attend_mask
804
+ causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
805
+ if attention_mask is not None:
806
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
807
+ if attention_mask.shape[-1] > target_length:
808
+ attention_mask = attention_mask[:, :target_length]
809
+ mask_length = attention_mask.shape[-1]
810
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
811
+ causal_mask.device
812
+ )
813
+ padding_mask = padding_mask == 0
814
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
815
+ padding_mask, min_dtype
816
+ )
817
+ return causal_mask
818
+
819
+
820
+ class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
821
+
822
+
823
+ class Phi3ForCausalLM(Phi3PreTrainedModel, GenerationMixin):
824
+ _tied_weights_keys = ["lm_head.weight"]
825
+ _tp_plan = {"lm_head": "colwise_rep"}
826
+ _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
827
+
828
+ def __init__(self, config):
829
+ super().__init__(config)
830
+ self.model = Phi3Model(config)
831
+ self.vocab_size = config.vocab_size
832
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
833
+
834
+ # Initialize weights and apply final processing
835
+ self.post_init()
836
+
837
+ def get_input_embeddings(self):
838
+ return self.model.embed_tokens
839
+
840
+ def set_input_embeddings(self, value):
841
+ self.model.embed_tokens = value
842
+
843
+ def get_output_embeddings(self):
844
+ return self.lm_head
845
+
846
+ def set_output_embeddings(self, new_embeddings):
847
+ self.lm_head = new_embeddings
848
+
849
+ def set_decoder(self, decoder):
850
+ self.model = decoder
851
+
852
+ def get_decoder(self):
853
+ return self.model
854
+
855
+ @deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
856
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
857
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
858
+ def forward(
859
+ self,
860
+ input_ids: torch.LongTensor = None,
861
+ attention_mask: Optional[torch.Tensor] = None,
862
+ position_ids: Optional[torch.LongTensor] = None,
863
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
864
+ inputs_embeds: Optional[torch.FloatTensor] = None,
865
+ labels: Optional[torch.LongTensor] = None,
866
+ use_cache: Optional[bool] = None,
867
+ output_attentions: Optional[bool] = None,
868
+ output_hidden_states: Optional[bool] = None,
869
+ return_dict: Optional[bool] = None,
870
+ cache_position: Optional[torch.LongTensor] = None,
871
+ logits_to_keep: Union[int, torch.Tensor] = 0,
872
+ **kwargs: Unpack[KwargsForCausalLM],
873
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
874
+ r"""
875
+ Args:
876
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
877
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
878
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
879
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
880
+
881
+ logits_to_keep (`int` or `torch.Tensor`, *optional*):
882
+ If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
883
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
884
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
885
+ If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
886
+ This is useful when using packed tensor format (single dimension for batch and sequence length).
887
+
888
+ Returns:
889
+
890
+ Example:
891
+
892
+ ```python
893
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
894
+
895
+ >>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
896
+ >>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
897
+
898
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
899
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
900
+
901
+ >>> # Generate
902
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
903
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
904
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
905
+ ```"""
906
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
907
+ output_hidden_states = (
908
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
909
+ )
910
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
911
+
912
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
913
+ outputs = self.model(
914
+ input_ids=input_ids,
915
+ attention_mask=attention_mask,
916
+ position_ids=position_ids,
917
+ past_key_values=past_key_values,
918
+ inputs_embeds=inputs_embeds,
919
+ use_cache=use_cache,
920
+ output_attentions=output_attentions,
921
+ output_hidden_states=output_hidden_states,
922
+ return_dict=return_dict,
923
+ cache_position=cache_position,
924
+ **kwargs,
925
+ )
926
+
927
+ hidden_states = outputs[0]
928
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
929
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
930
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
931
+
932
+ loss = None
933
+ if labels is not None:
934
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
935
+
936
+ if not return_dict:
937
+ output = (logits,) + outputs[1:]
938
+ return (loss,) + output if loss is not None else output
939
+
940
+ return CausalLMOutputWithPast(
941
+ loss=loss,
942
+ logits=logits,
943
+ past_key_values=outputs.past_key_values,
944
+ hidden_states=outputs.hidden_states,
945
+ attentions=outputs.attentions,
946
+ )
947
+
948
+ def prepare_inputs_for_generation(
949
+ self,
950
+ input_ids,
951
+ past_key_values=None,
952
+ attention_mask=None,
953
+ inputs_embeds=None,
954
+ cache_position=None,
955
+ position_ids=None,
956
+ use_cache=True,
957
+ logits_to_keep=None,
958
+ **kwargs,
959
+ ):
960
+ # Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
961
+ # process
962
+
963
+ # When the first time input length reached long and short factor switching point, enforce re-compute cache
964
+ # It will cause downside of slower at this single token position, however, better than current failure.
965
+ if (
966
+ past_key_values
967
+ and self.config.rope_scaling
968
+ and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
969
+ ):
970
+ past_length = cache_position[0]
971
+ if past_length <= self.config.original_max_position_embeddings:
972
+ past_key_values = None
973
+
974
+ model_inputs = super().prepare_inputs_for_generation(
975
+ input_ids=input_ids,
976
+ past_key_values=past_key_values,
977
+ attention_mask=attention_mask,
978
+ inputs_embeds=inputs_embeds,
979
+ cache_position=cache_position,
980
+ position_ids=position_ids,
981
+ use_cache=use_cache,
982
+ logits_to_keep=logits_to_keep,
983
+ **kwargs,
984
+ )
985
+ return model_inputs
986
+
987
+
988
+ @add_start_docstrings(
989
+ """
990
+ The Phi3 Model transformer with a sequence classification head on top (linear layer).
991
+
992
+ [`Phi3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
993
+ (e.g. GPT-2) do.
994
+
995
+ Since it does classification on the last token, it requires to know the position of the last token. If a
996
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
997
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
998
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
999
+ each row of the batch).
1000
+ """,
1001
+ PHI3_START_DOCSTRING,
1002
+ )
1003
+ class Phi3ForSequenceClassification(Phi3PreTrainedModel):
1004
+ def __init__(self, config):
1005
+ super().__init__(config)
1006
+ self.num_labels = config.num_labels
1007
+ self.model = Phi3Model(config)
1008
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1009
+
1010
+ # Initialize weights and apply final processing
1011
+ self.post_init()
1012
+
1013
+ def get_input_embeddings(self):
1014
+ return self.model.embed_tokens
1015
+
1016
+ def set_input_embeddings(self, value):
1017
+ self.model.embed_tokens = value
1018
+
1019
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1020
+ def forward(
1021
+ self,
1022
+ input_ids: Optional[torch.LongTensor] = None,
1023
+ attention_mask: Optional[torch.Tensor] = None,
1024
+ position_ids: Optional[torch.LongTensor] = None,
1025
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1026
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1027
+ labels: Optional[torch.LongTensor] = None,
1028
+ use_cache: Optional[bool] = None,
1029
+ output_attentions: Optional[bool] = None,
1030
+ output_hidden_states: Optional[bool] = None,
1031
+ return_dict: Optional[bool] = None,
1032
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1033
+ r"""
1034
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1035
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1036
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1037
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1038
+ """
1039
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1040
+
1041
+ transformer_outputs = self.model(
1042
+ input_ids,
1043
+ attention_mask=attention_mask,
1044
+ position_ids=position_ids,
1045
+ past_key_values=past_key_values,
1046
+ inputs_embeds=inputs_embeds,
1047
+ use_cache=use_cache,
1048
+ output_attentions=output_attentions,
1049
+ output_hidden_states=output_hidden_states,
1050
+ return_dict=return_dict,
1051
+ )
1052
+ hidden_states = transformer_outputs[0]
1053
+ logits = self.score(hidden_states)
1054
+
1055
+ if input_ids is not None:
1056
+ batch_size = input_ids.shape[0]
1057
+ else:
1058
+ batch_size = inputs_embeds.shape[0]
1059
+
1060
+ if self.config.pad_token_id is None and batch_size != 1:
1061
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1062
+ if self.config.pad_token_id is None:
1063
+ last_non_pad_token = -1
1064
+ elif input_ids is not None:
1065
+ # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
1066
+ non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
1067
+ token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
1068
+ last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
1069
+ else:
1070
+ last_non_pad_token = -1
1071
+ logger.warning_once(
1072
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1073
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1074
+ )
1075
+
1076
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
1077
+
1078
+ loss = None
1079
+ if labels is not None:
1080
+ loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
1081
+
1082
+ if not return_dict:
1083
+ output = (pooled_logits,) + transformer_outputs[1:]
1084
+ return ((loss,) + output) if loss is not None else output
1085
+
1086
+ return SequenceClassifierOutputWithPast(
1087
+ loss=loss,
1088
+ logits=pooled_logits,
1089
+ past_key_values=transformer_outputs.past_key_values,
1090
+ hidden_states=transformer_outputs.hidden_states,
1091
+ attentions=transformer_outputs.attentions,
1092
+ )
1093
+
1094
+
1095
+ @add_start_docstrings(
1096
+ """
1097
+ The Phi3 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1098
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1099
+ """,
1100
+ PHI3_START_DOCSTRING,
1101
+ )
1102
+ class Phi3ForTokenClassification(Phi3PreTrainedModel):
1103
+ def __init__(self, config):
1104
+ super().__init__(config)
1105
+ self.num_labels = config.num_labels
1106
+ self.model = Phi3Model(config)
1107
+ if getattr(config, "classifier_dropout", None) is not None:
1108
+ classifier_dropout = config.classifier_dropout
1109
+ elif getattr(config, "hidden_dropout", None) is not None:
1110
+ classifier_dropout = config.hidden_dropout
1111
+ else:
1112
+ classifier_dropout = 0.1
1113
+ self.dropout = nn.Dropout(classifier_dropout)
1114
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1115
+
1116
+ # Initialize weights and apply final processing
1117
+ self.post_init()
1118
+
1119
+ def get_input_embeddings(self):
1120
+ return self.model.embed_tokens
1121
+
1122
+ def set_input_embeddings(self, value):
1123
+ self.model.embed_tokens = value
1124
+
1125
+ @add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
1126
+ @add_code_sample_docstrings(
1127
+ checkpoint=_CHECKPOINT_FOR_DOC,
1128
+ output_type=TokenClassifierOutput,
1129
+ config_class=_CONFIG_FOR_DOC,
1130
+ )
1131
+ def forward(
1132
+ self,
1133
+ input_ids: Optional[torch.LongTensor] = None,
1134
+ attention_mask: Optional[torch.Tensor] = None,
1135
+ position_ids: Optional[torch.LongTensor] = None,
1136
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1137
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1138
+ labels: Optional[torch.LongTensor] = None,
1139
+ use_cache: Optional[bool] = None,
1140
+ output_attentions: Optional[bool] = None,
1141
+ output_hidden_states: Optional[bool] = None,
1142
+ return_dict: Optional[bool] = None,
1143
+ ) -> Union[Tuple, TokenClassifierOutput]:
1144
+ r"""
1145
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1146
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1147
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1148
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1149
+ """
1150
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1151
+
1152
+ outputs = self.model(
1153
+ input_ids,
1154
+ attention_mask=attention_mask,
1155
+ position_ids=position_ids,
1156
+ past_key_values=past_key_values,
1157
+ inputs_embeds=inputs_embeds,
1158
+ use_cache=use_cache,
1159
+ output_attentions=output_attentions,
1160
+ output_hidden_states=output_hidden_states,
1161
+ return_dict=return_dict,
1162
+ )
1163
+ sequence_output = outputs[0]
1164
+ sequence_output = self.dropout(sequence_output)
1165
+ logits = self.score(sequence_output)
1166
+
1167
+ loss = None
1168
+ if labels is not None:
1169
+ loss = self.loss_function(logits, labels, self.config)
1170
+
1171
+ if not return_dict:
1172
+ output = (logits,) + outputs[2:]
1173
+ return ((loss,) + output) if loss is not None else output
1174
+
1175
+ return TokenClassifierOutput(
1176
+ loss=loss,
1177
+ logits=logits,
1178
+ hidden_states=outputs.hidden_states,
1179
+ attentions=outputs.attentions,
1180
+ )