Felladrin commited on
Commit
a5cfc05
·
verified ·
1 Parent(s): fe83670

Upload configuration_phi3.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. configuration_phi3.py +226 -0
configuration_phi3.py ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """Phi-3 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ class Phi3Config(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
28
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the
30
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+ Args:
36
+ vocab_size (`int`, *optional*, defaults to 32064):
37
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
38
+ `inputs_ids` passed when calling [`Phi3Model`].
39
+ hidden_size (`int`, *optional*, defaults to 3072):
40
+ Dimension of the hidden representations.
41
+ intermediate_size (`int`, *optional*, defaults to 8192):
42
+ Dimension of the MLP representations.
43
+ num_hidden_layers (`int`, *optional*, defaults to 32):
44
+ Number of hidden layers in the Transformer decoder.
45
+ num_attention_heads (`int`, *optional*, defaults to 32):
46
+ Number of attention heads for each attention layer in the Transformer decoder.
47
+ num_key_value_heads (`int`, *optional*):
48
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
49
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
50
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
51
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
52
+ by meanpooling all the original heads within that group. For more details checkout [this
53
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
54
+ `num_attention_heads`.
55
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
56
+ Dropout probability for mlp outputs.
57
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
58
+ The dropout ratio for the embeddings.
59
+ attention_dropout (`float`, *optional*, defaults to 0.0):
60
+ The dropout ratio after computing the attention scores.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
64
+ The maximum sequence length that this model might ever be used with.
65
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
66
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
67
+ original RoPE embeddings when using long scaling.
68
+ initializer_range (`float`, *optional*, defaults to 0.02):
69
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
70
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
71
+ The epsilon value used for the RMSNorm.
72
+ use_cache (`bool`, *optional*, defaults to `True`):
73
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
74
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
75
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
76
+ Whether to tie weight embeddings
77
+ rope_theta (`float`, *optional*, defaults to 10000.0):
78
+ The base period of the RoPE embeddings.
79
+ rope_scaling (`dict`, *optional*):
80
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
81
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
82
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
83
+ divided by the number of attention heads divided by 2.
84
+ partial_rotary_factor (`float`, *optional*, defaults to 1.0):
85
+ Percentage of the query and keys which will have rotary embedding. Must be between 0.0 and 1.0.
86
+ bos_token_id (`int`, *optional*, defaults to 1):
87
+ The id of the "beginning-of-sequence" token.
88
+ eos_token_id (`int`, *optional*, defaults to 32000):
89
+ The id of the "end-of-sequence" token.
90
+ pad_token_id (`int`, *optional*, defaults to 32000):
91
+ The id of the padding token.
92
+ sliding_window (`int`, *optional*):
93
+ Sliding window attention window size. If `None`, no sliding window is applied.
94
+
95
+ Example:
96
+
97
+ ```python
98
+ >>> from transformers import Phi3Model, Phi3Config
99
+
100
+ >>> # Initializing a Phi-3 style configuration
101
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
102
+
103
+ >>> # Initializing a model from the configuration
104
+ >>> model = Phi3Model(configuration)
105
+
106
+ >>> # Accessing the model configuration
107
+ >>> configuration = model.config
108
+ ```"""
109
+
110
+ model_type = "phi3"
111
+ keys_to_ignore_at_inference = ["past_key_values"]
112
+
113
+ def __init__(
114
+ self,
115
+ vocab_size=32064,
116
+ hidden_size=3072,
117
+ intermediate_size=8192,
118
+ num_hidden_layers=32,
119
+ num_attention_heads=32,
120
+ num_key_value_heads=None,
121
+ resid_pdrop=0.0,
122
+ embd_pdrop=0.0,
123
+ attention_dropout=0.0,
124
+ hidden_act="silu",
125
+ max_position_embeddings=4096,
126
+ original_max_position_embeddings=4096,
127
+ initializer_range=0.02,
128
+ rms_norm_eps=1e-5,
129
+ use_cache=True,
130
+ tie_word_embeddings=False,
131
+ rope_theta=10000.0,
132
+ rope_scaling=None,
133
+ partial_rotary_factor=1.0,
134
+ bos_token_id=1,
135
+ eos_token_id=32000,
136
+ pad_token_id=32000,
137
+ sliding_window=None,
138
+ **kwargs,
139
+ ):
140
+ self.vocab_size = vocab_size
141
+ self.hidden_size = hidden_size
142
+ self.intermediate_size = intermediate_size
143
+ self.num_hidden_layers = num_hidden_layers
144
+ self.num_attention_heads = num_attention_heads
145
+
146
+ if num_key_value_heads is None:
147
+ num_key_value_heads = num_attention_heads
148
+
149
+ self.num_key_value_heads = num_key_value_heads
150
+ self.resid_pdrop = resid_pdrop
151
+ self.embd_pdrop = embd_pdrop
152
+ self.attention_dropout = attention_dropout
153
+ self.hidden_act = hidden_act
154
+ self.max_position_embeddings = max_position_embeddings
155
+ self.original_max_position_embeddings = original_max_position_embeddings
156
+ self.initializer_range = initializer_range
157
+ self.rms_norm_eps = rms_norm_eps
158
+ self.use_cache = use_cache
159
+ self.rope_theta = rope_theta
160
+ self.rope_scaling = rope_scaling
161
+ self.partial_rotary_factor = partial_rotary_factor
162
+ self._rope_scaling_adjustment()
163
+ self._rope_scaling_validation()
164
+ self.sliding_window = sliding_window
165
+
166
+ super().__init__(
167
+ bos_token_id=bos_token_id,
168
+ eos_token_id=eos_token_id,
169
+ pad_token_id=pad_token_id,
170
+ tie_word_embeddings=tie_word_embeddings,
171
+ **kwargs,
172
+ )
173
+
174
+ def _rope_scaling_adjustment(self):
175
+ """
176
+ Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
177
+ """
178
+ if self.rope_scaling is None:
179
+ return
180
+
181
+ rope_scaling_type = self.rope_scaling.get("type", None)
182
+
183
+ # For backward compatibility if previous version used "su" or "yarn"
184
+ if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
185
+ self.rope_scaling["type"] = "longrope"
186
+
187
+ def _rope_scaling_validation(self):
188
+ """
189
+ Validate the `rope_scaling` configuration.
190
+ """
191
+ if self.rope_scaling is None:
192
+ return
193
+
194
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
195
+ raise ValueError(
196
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
197
+ f"got {self.rope_scaling}"
198
+ )
199
+ rope_scaling_type = self.rope_scaling.get("type", None)
200
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
201
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
202
+ if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
203
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
204
+ if not (
205
+ isinstance(rope_scaling_short_factor, list)
206
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
207
+ ):
208
+ raise ValueError(
209
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
210
+ )
211
+ rotary_ndims = int(self.hidden_size // self.num_attention_heads * self.partial_rotary_factor)
212
+ if not len(rope_scaling_short_factor) == rotary_ndims // 2:
213
+ raise ValueError(
214
+ f"`rope_scaling`'s short_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_short_factor)}"
215
+ )
216
+ if not (
217
+ isinstance(rope_scaling_long_factor, list)
218
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
219
+ ):
220
+ raise ValueError(
221
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
222
+ )
223
+ if not len(rope_scaling_long_factor) == rotary_ndims // 2:
224
+ raise ValueError(
225
+ f"`rope_scaling`'s long_factor field must have length {rotary_ndims // 2}, got {len(rope_scaling_long_factor)}"
226
+ )