metadata
license: mit
license_link: https://huggingface.co./microsoft/Phi-4-mini-instruct/resolve/main/LICENSE
language:
- multilingual
pipeline_tag: text-generation
tags:
- nlp
- code
- mlx
- mlx-my-repo
widget:
- messages:
- role: user
content: Can you provide ways to eat combinations of bananas and dragonfruits?
library_name: transformers
base_model: microsoft/Phi-4-mini-instruct
mlx-community/Phi-4-mini-instruct-8bit
The Model mlx-community/Phi-4-mini-instruct-8bit was converted to MLX format from microsoft/Phi-4-mini-instruct using mlx-lm version 0.21.5.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Phi-4-mini-instruct-8bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)