mlabonne's picture
Update README.md
09c9096 verified
metadata
license: other
datasets:
  - mlabonne/orpo-dpo-mix-40k
tags:
  - abliterated

Llama-3-8B-Instruct-abliterated-dpomix

This model is an experimental DPO fine-tune of an abliterated Llama 3 8B Instruct model on the full mlabonne/orpo-dpo-mix-40k dataset. It improves Llama 3 8B Instruct's performance while being uncensored.

πŸ”Ž Applications

This is an uncensored model. You can use it for any application that doesn't require alignment, like role-playing.

Tested on LM Studio using the "Llama 3" preset.

⚑ Quantization

πŸ† Evaluation

Open LLM Leaderboard

This model improves the performance of the abliterated source model and recovers the MMLU that was lost in the abliteration process.

image/png

Nous

Model Average AGIEval GPT4All TruthfulQA Bigbench
mlabonne/Llama-3-8B-Instruct-abliterated-dpomix πŸ“„ 52.26 41.6 69.95 54.22 43.26
meta-llama/Meta-Llama-3-8B-Instruct πŸ“„ 51.34 41.22 69.86 51.65 42.64
failspy/Meta-Llama-3-8B-Instruct-abliterated-v3 πŸ“„ 51.21 40.23 69.5 52.44 42.69
abacusai/Llama-3-Smaug-8B πŸ“„ 49.65 37.15 69.12 51.66 40.67
mlabonne/OrpoLlama-3-8B πŸ“„ 48.63 34.17 70.59 52.39 37.36
meta-llama/Meta-Llama-3-8B πŸ“„ 45.42 31.1 69.95 43.91 36.7

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Llama-3-8B-Instruct-abliterated-dpomix"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])