mlabonne's picture
updates wandb
6f2b949 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - mistral
  - instruct
  - finetune
  - chatml
  - gpt4
  - synthetic data
  - distillation
  - dpo
  - rlhf
datasets:
  - mlabonne/chatml_dpo_pairs
base_model: teknium/OpenHermes-2.5-Mistral-7B
model-index:
  - name: NeuralHermes-2.5-Mistral-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 66.55
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 84.9
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.32
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 54.93
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.3
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 61.33
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/NeuralHermes-2.5-Mistral-7B
          name: Open LLM Leaderboard

NeuralHermes 2.5 - Mistral 7B

NeuralHermes is based on the teknium/OpenHermes-2.5-Mistral-7B model that has been further fine-tuned with Direct Preference Optimization (DPO) using the mlabonne/chatml_dpo_pairs dataset. It surpasses the original model on most benchmarks (see results).

It is directly inspired by the RLHF process described by Intel/neural-chat-7b-v3-1's authors to improve performance. I used the same dataset and reformatted it to apply the ChatML template.

The code to train this model is available on Google Colab and GitHub. It required an A100 GPU for about an hour.

Quantized models

Results

Update: NeuralHermes-2.5 became the best Hermes-based model on the Open LLM leaderboard and one of the very best 7b models. 🎉

image/png

Teknium (author of OpenHermes-2.5-Mistral-7B) benchmarked the model (see his tweet).

Results are improved on every benchmark: AGIEval (from 43.07% to 43.62%), GPT4All (from 73.12% to 73.25%), and TruthfulQA.

AGIEval

GPT4All

TruthfulQA

You can check the Weights & Biases project here.

Usage

You can run this model using LM Studio or any other frontend.

You can also run this model using the following code:

import transformers
from transformers import AutoTokenizer

# Format prompt
message = [
    {"role": "system", "content": "You are a helpful assistant chatbot."},
    {"role": "user", "content": "What is a Large Language Model?"}
]
tokenizer = AutoTokenizer.from_pretrained(new_model)
prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)

# Create pipeline
pipeline = transformers.pipeline(
    "text-generation",
    model=new_model,
    tokenizer=tokenizer
)

# Generate text
sequences = pipeline(
    prompt,
    do_sample=True,
    temperature=0.7,
    top_p=0.9,
    num_return_sequences=1,
    max_length=200,
)
print(sequences[0]['generated_text'])

Training hyperparameters

LoRA:

  • r=16
  • lora_alpha=16
  • lora_dropout=0.05
  • bias="none"
  • task_type="CAUSAL_LM"
  • target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']

Training arguments:

  • per_device_train_batch_size=4
  • gradient_accumulation_steps=4
  • gradient_checkpointing=True
  • learning_rate=5e-5
  • lr_scheduler_type="cosine"
  • max_steps=200
  • optim="paged_adamw_32bit"
  • warmup_steps=100

DPOTrainer:

  • beta=0.1
  • max_prompt_length=1024
  • max_length=1536