metadata
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
base_model:
- mlabonne/OmniTruthyBeagle-7B-v0
- mlabonne/NeuBeagle-7B
- mlabonne/NeuralOmniBeagle-7B
model-index:
- name: Monarch-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 73.04
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 89.03
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.41
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 77.35
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 84.61
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.07
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Monarch-7B
name: Open LLM Leaderboard
Monarch-7B
Update 13/02/24: Monarch-7B is the best-performing model on the YALL leaderboard.
Monarch-7B is a merge of the following models using LazyMergekit:
π Evaluation
The evaluation was performed using LLM AutoEval on Nous suite. See the entire leaderboard here.
Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
---|---|---|---|---|---|
Monarch-7B π | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
teknium/OpenHermes-2.5-Mistral-7B π | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
mlabonne/NeuralHermes-2.5-Mistral-7B π | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
mlabonne/NeuralBeagle14-7B π | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
eren23/dpo-binarized-NeuralTrix-7B π | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
CultriX/NeuralTrix-7B-dpo π | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
𧩠Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: mlabonne/OmniTruthyBeagle-7B-v0
parameters:
density: 0.65
weight: 0.36
- model: mlabonne/NeuBeagle-7B
parameters:
density: 0.6
weight: 0.34
- model: mlabonne/NeuralOmniBeagle-7B
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Monarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 76.25 |
AI2 Reasoning Challenge (25-Shot) | 73.04 |
HellaSwag (10-Shot) | 89.03 |
MMLU (5-Shot) | 64.41 |
TruthfulQA (0-shot) | 77.35 |
Winogrande (5-shot) | 84.61 |
GSM8k (5-shot) | 69.07 |