|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
- lazymergekit |
|
base_model: |
|
- Qwen/Qwen2.5-32B-Instruct |
|
license_name: tongyi-qianwen |
|
license_link: https://huggingface.co./Qwen/Qwen2-72B-Instruct/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: BigQwen2.5-52B-Instruct |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 79.29 |
|
name: strict accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 59.81 |
|
name: normalized accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 17.82 |
|
name: exact match |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 6.94 |
|
name: acc_norm |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 10.45 |
|
name: acc_norm |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 50.22 |
|
name: accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct |
|
name: Open LLM Leaderboard |
|
--- |
|
# BigQwen2.5-52B-Instruct |
|
|
|
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/98GiKtmH1AtHHbIbOUH4Y.jpeg) |
|
|
|
BigQwen2.5-52B-Instruct is a [Qwen/Qwen2-32B-Instruct](https://huggingface.co./Qwen/Qwen2-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main). |
|
|
|
It applies the [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co./mlabonne/Meta-Llama-3-120B-Instruct/) recipe. |
|
|
|
I made it due to popular demand but I haven't tested it so use it at your own risk. ¯\\\_(ツ)_/¯ |
|
|
|
## 🔍 Applications |
|
|
|
It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory. |
|
|
|
## 🏆 Evaluation |
|
|
|
| Metric |BigQwen2.5-Echo-47B-Instruct|**BigQwen2.5-52B-Instruct**|Qwen2.5-32B-Instruct| |
|
|-------------------|----:|----:|----:| |
|
|Avg. |30.31|37.42|36.17| |
|
|IFEval (0-Shot) |73.57|79.29|83.46| |
|
|BBH (3-Shot) |44.52|59.81|56.49| |
|
|MATH Lvl 5 (4-Shot)| 3.47|17.82|0| |
|
|GPQA (0-shot) | 8.61| 6.94|11.74| |
|
|MuSR (0-shot) |10.19|10.45|13.5| |
|
|MMLU-PRO (5-shot) |41.49|50.22|51.85| |
|
|
|
## 🧩 Configuration |
|
|
|
The following YAML configuration was used to produce this model: |
|
|
|
```yaml |
|
slices: |
|
- sources: |
|
- layer_range: [0, 16] |
|
model: Qwen/Qwen2.5-32B-Instruct |
|
- sources: |
|
- layer_range: [8, 24] |
|
model: Qwen/Qwen2.5-32B-Instruct |
|
- sources: |
|
- layer_range: [16, 32] |
|
model: Qwen/Qwen2.5-32B-Instruct |
|
- sources: |
|
- layer_range: [24, 40] |
|
model: Qwen/Qwen2.5-32B-Instruct |
|
- sources: |
|
- layer_range: [32, 48] |
|
model: Qwen/Qwen2.5-32B-Instruct |
|
- sources: |
|
- layer_range: [40, 56] |
|
model: Qwen/Qwen2.5-32B-Instruct |
|
- sources: |
|
- layer_range: [56, 64] |
|
model: Qwen/Qwen2.5-32B-Instruct |
|
merge_method: passthrough |
|
dtype: bfloat16 |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "mlabonne/BigQwen2.5-52B-Instruct" |
|
messages = [{"role": "user", "content": "What is a large language model?"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |