mjwong's picture
Update README.md
1c42c10
|
raw
history blame
3.47 kB
metadata
datasets:
  - xnli
model-index:
  - name: multilingual-e5-large-xnli
    results: []
pipeline_tag: zero-shot-classification
language:
  - multilingual
  - en
  - ar
  - bg
  - de
  - el
  - es
  - fr
  - ru
  - sw
  - th
  - tr
  - ur
  - vi
  - zh
license: mit
widget:
  - text: Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU
    candidate_labels: politics, economy, entertainment, environment

multilingual-e5-large-xnli

This model is a fine-tuned version of intfloat/multilingual-e5-large on the XNLI dataset.

Model description

Text Embeddings by Weakly-Supervised Contrastive Pre-training. Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022

How to use the model

The model can be loaded with the zero-shot-classification pipeline like so:

from transformers import pipeline
classifier = pipeline("zero-shot-classification",
                      model="mjwong/multilingual-e5-large-xnli")

You can then use this pipeline to classify sequences into any of the class names you specify.

sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
candidate_labels = ["politics", "economy", "entertainment", "environment"]
classifier(sequence_to_classify, candidate_labels)
#{'sequence': 'Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU',
# 'labels': ['politics', 'economy', 'entertainment', 'environment'],
# 'scores': [0.6869393587112427,
#  0.18112628161907196,
#  0.07022464275360107,
#  0.06170979142189026]}

If more than one candidate label can be correct, pass multi_class=True to calculate each class independently:

candidate_labels = ["politics", "economy", "entertainment", "environment"]
classifier(sequence_to_classify, candidate_labels, multi_label=True)
#{'sequence': 'Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU',
# 'labels': ['politics', 'economy', 'entertainment', 'environment'],
# 'scores': [0.9068101644515991,
#  0.2646591067314148,
#  0.00299322628416121,
#  0.0016029390972107649]}

Eval results

The model was evaluated using the XNLI test sets on 14 languages: English (en), Arabic (ar), Bulgarian (bg), German (de), Greek (el), Spanish (es), French (fr), Russian (ru), Swahili (sw), Thai (th), Turkish (tr), Urdu (ur), Vietnam (vi) and Chinese (zh). The metric used is accuracy.

Datasets en ar bg de el es fr ru sw th tr ur vi zh
multilingual-e5-base-xnli 0.849 0.771 0.800 0.796 0.795 0.812 0.801 0.783 0.731 0.767 0.771 0.710 0.789 0.786
multilingual-e5-large-xnli 0.867 0.798 0.829 0.821 0.820 0.838 0.828 0.810 0.752 0.787 0.794 0.726 0.804 0.810

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Framework versions

  • Transformers 4.28.1
  • Pytorch 1.12.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.12.1