See axolotl config
axolotl version: 0.4.0
base_model: meta-llama/Meta-Llama-3-70B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: /workspace/data/dataset/hex_phi_dolphin_responses.jsonl
ds_type: json
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: /workspace/data/out/qlora
adapter: qlora
lora_model_dir:
sequence_len: 512
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
workspace/data/out/qlora
This model is a fine-tuned version of meta-llama/Meta-Llama-3-70B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0876
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 10
- gradient_accumulation_steps: 4
- total_train_batch_size: 80
- total_eval_batch_size: 20
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7723 | 0.2667 | 1 | 2.0884 |
1.8176 | 0.5333 | 2 | 2.0872 |
1.8499 | 0.8 | 3 | 2.0874 |
1.7963 | 1.0667 | 4 | 2.0865 |
1.8762 | 1.3333 | 5 | 2.0866 |
1.7795 | 1.6 | 6 | 2.0875 |
1.8179 | 1.8667 | 7 | 2.0880 |
1.8353 | 2.1333 | 8 | 2.0874 |
1.8009 | 2.4 | 9 | 2.0864 |
1.7625 | 2.6667 | 10 | 2.0869 |
1.8273 | 2.9333 | 11 | 2.0874 |
1.8198 | 3.2 | 12 | 2.0876 |
Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for mjobe105/qlora-dolphindataset
Base model
meta-llama/Meta-Llama-3-70B
Finetuned
meta-llama/Meta-Llama-3-70B-Instruct