|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: bert-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bert-reg-crossencoder-mse |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-reg-crossencoder-mse |
|
|
|
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0752 |
|
- Mse: 0.0752 |
|
- Mae: 0.2120 |
|
- Pearson Corr: 0.3937 |
|
- Spearman Corr: 0.3178 |
|
- Cosine Sim: 0.9163 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 100 |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Pearson Corr | Spearman Corr | Cosine Sim | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------------:|:-------------:|:----------:| |
|
| 0.1034 | 1.0 | 41 | 0.0704 | 0.0704 | 0.2198 | 0.1914 | 0.2429 | 0.9070 | |
|
| 0.097 | 2.0 | 82 | 0.0739 | 0.0739 | 0.2161 | 0.2185 | 0.2208 | 0.9059 | |
|
| 0.0877 | 3.0 | 123 | 0.0663 | 0.0663 | 0.2154 | 0.3214 | 0.2426 | 0.9133 | |
|
| 0.0679 | 4.0 | 164 | 0.0723 | 0.0723 | 0.2054 | 0.3722 | 0.3382 | 0.9175 | |
|
| 0.0569 | 5.0 | 205 | 0.0644 | 0.0644 | 0.2058 | 0.3867 | 0.3552 | 0.9155 | |
|
| 0.0408 | 6.0 | 246 | 0.0773 | 0.0773 | 0.2102 | 0.4045 | 0.3105 | 0.9190 | |
|
| 0.0317 | 7.0 | 287 | 0.0752 | 0.0752 | 0.2120 | 0.3937 | 0.3178 | 0.9163 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|