ๅŠ ๅ…ฅไธญๆ–‡่ฏ่กจๅนถ็ปง็ปญ้ข„่ฎญ็ปƒไธญๆ–‡Embedding๏ผŒๅนถๅœจๆญคๅŸบ็ก€ไธŠ็ปง็ปญไฝฟ็”จๆŒ‡ไปคๆ•ฐๆฎ้›†finetuning๏ผŒๅพ—ๅˆฐ็š„ไธญๆ–‡Alpaca-33Bๆจกๅž‹ใ€‚

ๆจกๅž‹่ฝฌๆข็”จๅˆฐ็š„็›ธๅ…ณbaseๅŠloraๆจกๅž‹ๅฆ‚ไธ‹๏ผš

  • base-model: elinas/llama-30b-hf-transformers-4.29
  • lora-model: ziqingyang/chinese-alpaca-lora-33b

่ฏฆๆƒ…ๅฏๅ‚่€ƒ๏ผšhttps://github.com/ymcui/Chinese-LLaMA-Alpaca/releases/tag/v4.0

ไฝฟ็”จๆ–นๆณ•ๅ‚่€ƒ

  1. ๅฎ‰่ฃ…ๆจกๅ—ๅŒ…
pip install sentencepiece
pip install transformers>=4.28.0
  1. ็”Ÿๆˆๆ–‡ๆœฌ
import torch
import transformers
from transformers import LlamaTokenizer, LlamaForCausalLM

def generate_prompt(text):
    return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
{text}

### Response:"""


tokenizer = LlamaTokenizer.from_pretrained('minlik/chinese-alpaca-33b-merged')
model = LlamaForCausalLM.from_pretrained('minlik/chinese-alpaca-33b-merged').half().to('cuda')
model.eval()

text = '็ฌฌไธ€ไธช็™ปไธŠๆœˆ็ƒ็š„ไบบๆ˜ฏ่ฐ๏ผŸ'
prompt = generate_prompt(text)
input_ids = tokenizer.encode(prompt, return_tensors='pt').to('cuda')


with torch.no_grad():
    output_ids = model.generate(
        input_ids=input_ids,
        max_new_tokens=128,
        temperature=1,
        top_k=40,
        top_p=0.9,
        repetition_penalty=1.15
    ).cuda()
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output.replace(prompt, '').strip())

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 53.09
ARC (25-shot) 59.3
HellaSwag (10-shot) 78.43
MMLU (5-shot) 57.69
TruthfulQA (0-shot) 52.45
Winogrande (5-shot) 76.09
GSM8K (5-shot) 8.04
DROP (3-shot) 39.67
Downloads last month
818
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using minlik/chinese-alpaca-33b-merged 22