|
--- |
|
license: cc-by-nc-4.0 |
|
base_model: MCG-NJU/videomae-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: videomae-base-finetuned-ElderReact-anger-balanced-hp |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# videomae-base-finetuned-ElderReact-anger-balanced-hp |
|
|
|
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co./MCG-NJU/videomae-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6938 |
|
- Accuracy: 0.4672 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 480 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.7532 | 0.05 | 25 | 0.7078 | 0.5238 | |
|
| 0.7571 | 1.05 | 50 | 0.7034 | 0.4762 | |
|
| 0.7357 | 2.05 | 75 | 0.7080 | 0.4429 | |
|
| 0.6976 | 3.05 | 100 | 0.7160 | 0.5238 | |
|
| 0.7131 | 4.05 | 125 | 0.6893 | 0.4714 | |
|
| 0.7275 | 5.05 | 150 | 0.8350 | 0.4929 | |
|
| 0.7334 | 6.05 | 175 | 0.7127 | 0.4738 | |
|
| 0.7274 | 7.05 | 200 | 0.7088 | 0.5048 | |
|
| 0.697 | 8.05 | 225 | 0.6911 | 0.5190 | |
|
| 0.7605 | 9.05 | 250 | 0.7296 | 0.4976 | |
|
| 0.7105 | 10.05 | 275 | 0.7100 | 0.4833 | |
|
| 0.6745 | 11.05 | 300 | 0.7271 | 0.4548 | |
|
| 0.7166 | 12.05 | 325 | 0.6955 | 0.5286 | |
|
| 0.6849 | 13.05 | 350 | 0.6981 | 0.4976 | |
|
| 0.6978 | 14.05 | 375 | 0.6976 | 0.4952 | |
|
| 0.6928 | 15.05 | 400 | 0.6941 | 0.5405 | |
|
| 0.7057 | 16.05 | 425 | 0.7022 | 0.5 | |
|
| 0.6842 | 17.05 | 450 | 0.6943 | 0.4738 | |
|
| 0.6824 | 18.05 | 475 | 0.6945 | 0.5167 | |
|
| 0.7065 | 19.01 | 480 | 0.6948 | 0.5143 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|