Original Model: https://huggingface.co./Sao10K/MN-12B-Lyra-v3
Quantized with FP8 using https://github.com/neuralmagic/AutoFP8
Script:
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "Sao10K/MN-12B-Lyra-v3"
quantized_model_dir = "MN-12B-Lyra-v3-FP8"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
tokenizer.pad_token = tokenizer.eos_token
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
quantize_config = BaseQuantizeConfig(
quant_method="fp8",
activation_scheme="static",
ignore_patterns=["re:.*lm_head"],
)
model = AutoFP8ForCausalLM.from_pretrained(
pretrained_model_dir, quantize_config=quantize_config
)
model.quantize(examples)
model.save_quantized(quantized_model_dir)
- Downloads last month
- 3
Model tree for mikudev/MN-12B-Lyra-v3-FP8
Base model
Sao10K/MN-12B-Lyra-v3