mishig's picture
mishig HF staff
Upload README.md
b294556
|
raw
history blame
3.86 kB
metadata
language: en
datasets:
  - librispeech_asr
tags:
  - audio
  - automatic-speech-recognition
license: apache-2.0
widget:
  - example_title: Librispeech sample 1
    src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
  - example_title: Librispeech sample 2
    src: https://cdn-media.huggingface.co/speech_samples/sample2.flac

UniSpeech-SAT-Base-Finetuned-100h-Libri

Microsoft's UniSpeech

A unispeech-sat-base model that was fine-tuned on 100h hours of Librispeech on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.

The model was fine-tuned on:

Paper: UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING

Authors: Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu

Abstract Self-supervised learning (SSL) is a long-standing goal for speech processing, since it utilizes large-scale unlabeled data and avoids extensive human labeling. Recent years witness great successes in applying self-supervised learning in speech recognition, while limited exploration was attempted in applying SSL for modeling speaker characteristics. In this paper, we aim to improve the existing SSL framework for speaker representation learning. Two methods are introduced for enhancing the unsupervised speaker information extraction. First, we apply the multi-task learning to the current SSL framework, where we integrate the utterance-wise contrastive loss with the SSL objective function. Second, for better speaker discrimination, we propose an utterance mixing strategy for data augmentation, where additional overlapped utterances are created unsupervisely and incorporate during training. We integrate the proposed methods into the HuBERT framework. Experiment results on SUPERB benchmark show that the proposed system achieves state-of-the-art performance in universal representation learning, especially for speaker identification oriented tasks. An ablation study is performed verifying the efficacy of each proposed method. Finally, we scale up training dataset to 94 thousand hours public audio data and achieve further performance improvement in all SUPERB tasks..

The original model can be found under https://github.com/microsoft/UniSpeech/tree/main/UniSpeech-SAT.

Usage

To transcribe audio files the model can be used as a standalone acoustic model as follows:

 from transformers import Wav2Vec2Processor, UniSpeechSatForCTC
 from datasets import load_dataset
 import torch
 
 # load model and tokenizer
 processor = Wav2Vec2Processor.from_pretrained("microsoft/unispeech-sat-base-100h-libri-ft")
 model = UniSpeechSatForCTC.from_pretrained("microsoft/unispeech-sat-base-100h-libri-ft")
     
 # load dummy dataset
 ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
 
 # tokenize
 input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values  # Batch size 1
 
 # retrieve logits
 logits = model(input_values).logits
 
 # take argmax and decode
 predicted_ids = torch.argmax(logits, dim=-1)
 transcription = processor.batch_decode(predicted_ids)

Contribution

The model was contributed by cywang and patrickvonplaten.

License

The official license can be found here

design