udop-large / README.md
nielsr's picture
nielsr HF staff
Update README.md
4c7f7ab verified
|
raw
history blame
1.94 kB
metadata
license: mit
tags:
  - vision
inference: false

UDOP model

The UDOP model was proposed in Unifying Vision, Text, and Layout for Universal Document Processing by Zineng Tang, Ziyi Yang, Guoxin Wang, Yuwei Fang, Yang Liu, Chenguang Zhu, Michael Zeng, Cha Zhang, Mohit Bansal.

Model description

UDOP adopts an encoder-decoder Transformer architecture based on T5 for document AI tasks like document image classification, document parsing and document visual question answering.

Intended uses & limitations

You can use the model for document image classification, document parsing and document visual question answering (DocVQA).

How to use

Here's how to use the model for one-shot semantic segmentation:

from transformers import AutoProcessor, UdopForConditionalGeneration
from datasets import load_dataset

# load model and processor
processor = AutoProcessor.from_pretrained("microsoft/udop-large", apply_ocr=False)
model = UdopForConditionalGeneration.from_pretrained("microsoft/udop-large")

dataset = load_dataset("nielsr/funsd-layoutlmv3", split="train")
example = dataset[0]
image = example["image"]
words = example["tokens"]
boxes = example["bboxes"]
question = "Question answering. What is the date on the form?"
encoding = processor(image, question, words, boxes=boxes, return_tensors="pt")

# autoregressive generation
predicted_ids = model.generate(**encoding)
print(processor.batch_decode(predicted_ids, skip_special_tokens=True)[0])
9/30/92

BibTeX entry and citation info

@misc{tang2023unifying,
      title={Unifying Vision, Text, and Layout for Universal Document Processing}, 
      author={Zineng Tang and Ziyi Yang and Guoxin Wang and Yuwei Fang and Yang Liu and Chenguang Zhu and Michael Zeng and Cha Zhang and Mohit Bansal},
      year={2023},
      eprint={2212.02623},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}