maira-2 / README.md
shruthib's picture
Update README to include other pyhton packages needed to run sample code
130534f verified
|
raw
history blame
14.3 kB
---
license: other
license_name: msrla
license_link: https://huggingface.co./microsoft/maira-2/blob/main/LICENSE
library_name: transformers
extra_gated_prompt: >-
Please confirm that you have read and agree to the following disclaimer.
The model(s) and/or software described in this repository are provided for research and development use only. The model(s) and/or software are not intended for use in clinical decision-making or for any other clinical use, and performance for clinical use has not been established. You bear sole responsibility for any use of these model(s) and/or software, including incorporation into any product intended for clinical use.
extra_gated_fields:
I have read and agree to the disclaimer: checkbox
---
# Model Card for MAIRA-2
<!-- Provide a quick summary of what the model is/does. -->
MAIRA-2 is a multimodal transformer designed for the generation of grounded or non-grounded radiology reports from chest X-rays. It is described in more detail in [MAIRA-2: Grounded Radiology Report Generation (S. Bannur, K. Bouzid et al., 2024)](https://arxiv.org/abs/2406.04449). MAIRA-2 has been built for research purposes only and is being shared to facilitate comparison and further research.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
MAIRA-2 is composed of the image encoder [RAD-DINO-MAIRA-2](https://huggingface.co./microsoft/rad-dino-maira-2) (used frozen), a projection layer (trained from scratch), and the language model [vicuna-7b-v1.5](https://huggingface.co./lmsys/vicuna-7b-v1.5) (fully fine-tuned).
- **Developed by:** Microsoft Research Health Futures
- **Model type:** Multimodal transformer
- **Language(s) (NLP):** English
- **License:** [MSRLA](./LICENSE)
- **Finetuned from model [optional]:** [vicuna-7b-1.5](https://huggingface.co./lmsys/vicuna-7b-v1.5), [RAD-DINO-MAIRA-2](https://huggingface.co./microsoft/rad-dino-maira-2)
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
MAIRA-2 is shared for research purposes only. It is **not meant to be used for clinical practice.** MAIRA-2 was not extensively tested for its capabilities and properties, including its accuracy and reliability in application settings, fairness across different demographics and uses, and security and privacy.
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
As inputs, MAIRA-2 takes a frontal chest X-ray, and any of the following:
- A lateral view from the current study
- A frontal view from the *prior* study, with accompanying prior report
- The indication for the current study
- The technique and comparison sections for the current study
MAIRA-2 can generate the _findings_ section of the current study, in one of two forms:
- Narrative text, without any image annotations (this is the typical report generation scenario).
- As a grounded report, wherein all described findings are accompanied by zero or more bounding boxes indicating their location on the current frontal image.
MAIRA-2 can also perform phrase grounding. In this case, it must also be provided with an input phrase. It will then repeat the phrase and generate a bounding box localising the finding described in the phrase.
These use-cases are illustrated with [sample code below](README.md#use-case-1-and-2-findings-generation-with-or-without-grounding).
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
MAIRA-2 was trained on chest X-rays from adults with English language reports only, and is not expected to work on any other imaging modality or anatomy. Variations in the input prompt (e.g. changing the instruction) are likely to degrade performance, as this model was *not* optimised for arbitrary user inputs.
As above, this is a research model which should not be used in any real clinical or production scenario.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
### Data biases
MAIRA-2 was trained on chest X-ray report datasets from Spain (translated from the original Spanish to English) and the USA, listed below. Reporting styles, patient demographics and disease prevalence, and image acquisition protocols can vary across health systems and regions. These factors will impact the generalisability of the model.
### Model errors (fabrication, omission)
This model does not perform perfectly on its tasks, as outlined in more detail in the [MAIRA-2 report](https://arxiv.org/abs/2406.04449). Hence, errors can be present in the generated (grounded) reports.
## How to Get Started with the Model
We demonstrate below how to run inference with MAIRA-2 for its three capabilities: findings generation with and without grounding, and phrase grounding.
### Setup
To run this sample code, you will need the following packages:
```
pillow
protobuf
sentencepiece
torch
transformers
```
You may temporarily need to install transformers from source since MAIRA-2 requires `transformers>=4.46.0.dev0`.
```
pip install git+https://github.com/huggingface/transformers.git@main
```
First, initialise the model and put it in eval mode.
```python
from transformers import AutoModelForCausalLM, AutoProcessor
from pathlib import Path
import torch
model = AutoModelForCausalLM.from_pretrained("microsoft/maira-2", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("microsoft/maira-2", trust_remote_code=True)
device = torch.device("cuda")
model = model.eval()
model = model.to(device)
```
We need to get some data to demonstrate the forward pass.
For this example, we'll collect an example from the IU X-ray dataset, which has a permissive license.
```python
import requests
from PIL import Image
def get_sample_data() -> dict[str, Image.Image | str]:
"""
Download chest X-rays from IU-Xray, which we didn't train MAIRA-2 on. License is CC.
We modified this function from the Rad-DINO repository on Huggingface.
"""
frontal_image_url = "https://openi.nlm.nih.gov/imgs/512/145/145/CXR145_IM-0290-1001.png"
lateral_image_url = "https://openi.nlm.nih.gov/imgs/512/145/145/CXR145_IM-0290-2001.png"
def download_and_open(url: str) -> Image.Image:
response = requests.get(url, headers={"User-Agent": "MAIRA-2"}, stream=True)
return Image.open(response.raw)
frontal_image = download_and_open(frontal_image_url)
lateral_image = download_and_open(lateral_image_url)
sample_data = {
"frontal": frontal_image,
"lateral": lateral_image,
"indication": "Dyspnea.",
"comparison": "None.",
"technique": "PA and lateral views of the chest.",
"phrase": "Pleural effusion." # For the phrase grounding example. This patient has pleural effusion.
}
return sample_data
sample_data = get_sample_data()
```
### Use-case 1 and 2: Findings generation with or without grounding
We can toggle whether MAIRA-2 generates a grounded report based on how we preprocess the inputs, as it uses a different prompt. Let's start without grounding (`get_grounding=False`). While generating, for non-grounded reporting use `max_new_tokens=300`, and for grounded reporting use `max_new_tokens=450` to accommodate additional box and object tokens.
```python
processed_inputs = processor.format_and_preprocess_reporting_input(
current_frontal=sample_data["frontal"],
current_lateral=sample_data["lateral"],
prior_frontal=None, # Our example has no prior
indication=sample_data["indication"],
technique=sample_data["technique"],
comparison=sample_data["comparison"],
prior_report=None, # Our example has no prior
return_tensors="pt",
get_grounding=False, # For this example we generate a non-grounded report
)
processed_inputs = processed_inputs.to(device)
with torch.no_grad():
output_decoding = model.generate(
**processed_inputs,
max_new_tokens=300, # Set to 450 for grounded reporting
use_cache=True,
)
prompt_length = processed_inputs["input_ids"].shape[-1]
decoded_text = processor.decode(output_decoding[0][prompt_length:], skip_special_tokens=True)
decoded_text = decoded_text.lstrip() # Findings generation completions have a single leading space
prediction = processor.convert_output_to_plaintext_or_grounded_sequence(decoded_text)
print("Parsed prediction:", prediction)
```
We get something that looks like this:
> There is a large right pleural effusion with associated right basilar atelectasis. The left lung is clear. No pneumothorax is identified. The cardiomediastinal silhouette and hilar contours are normal. There is no free air under the diaphragm. Surgical clips are noted in the right upper quadrant of the abdomen.
If we had set `get_grounding=True`, MAIRA-2 would generate a grounded report. For this example, that looks like this:
```python
('There is a large right pleural effusion.', [(0.055, 0.275, 0.445, 0.665)]),
('The left lung is clear.', None),
('No pneumothorax is identified.', None),
('The cardiomediastinal silhouette is within normal limits.', None),
('The visualized osseous structures are unremarkable.', None)
```
The generated bounding box coordinates are the `(x, y)` coordinates of the top left and bottom right corners of the box, e.g. `(x_topleft, y_topleft, x_bottomright, y_bottomright)`. These are relative to the _cropped_ image (that is, the image that MAIRA-2 ultimately got as input), so be careful while visualising. The processor provides a method `adjust_box_for_original_image_size` to get boxes relative to the original image shape.
Note that MAIRA-2 generates slightly different reports for grounded and non-grounded reporting scenarios, a side-effect of its grounded reporting training data coming from a different data distribution.
### Use-case 3: Phrase Grounding
Here the input is different as we provide the model with a phrase to ground in the image. Recall (`get_sample_data`) that our phrase here is just "Pleural effusion", which we already know is present in this image.
```python
processed_inputs = processor.format_and_preprocess_phrase_grounding_input(
frontal_image=sample_data["frontal"],
phrase=sample_data["phrase"],
return_tensors="pt",
)
processed_inputs = processed_inputs.to(device)
with torch.no_grad():
output_decoding = model.generate(
**processed_inputs,
max_new_tokens=150,
use_cache=True,
)
prompt_length = processed_inputs["input_ids"].shape[-1]
decoded_text = processor.decode(output_decoding[0][prompt_length:], skip_special_tokens=True)
prediction = processor.convert_output_to_plaintext_or_grounded_sequence(decoded_text)
print("Parsed prediction:", prediction)
```
This gives us something like this:
```python
('Pleural effusion.', [(0.025, 0.345, 0.425, 0.575)])
```
Again, as for grounded reporting we must remember the bbox coordinates are relative to the cropped image seen by MAIRA-2, use `processor.adjust_box_for_original_image_size` to get boxes adjusted for the original image shape.
## Training details
We did not originally train MAIRA-2 using the exact model class provided here, however we have checked that its behaviour is the same. We provide this class to facilitate research re-use and inference.
### Training data
MAIRA-2 was trained on a mix of public and private chest X-ray datasets. Each example comprises one or more CXR images and associated report text, with or without grounding (spatial annotations). The model is trained to generate the _findings_ section of the report, with or without grounding.
| Dataset | Country | # examples (ungrounded) | # examples (grounded) |
| ----- | ------ |------- | ----- |
| [MIMIC-CXR](https://www.nature.com/articles/s41597-019-0322-0) | USA | 55 218 | 595* |
| [PadChest](https://www.sciencedirect.com/science/article/abs/pii/S1361841520301614) | Spain | 52 828 | 3 122 |
| USMix (Private) | USA | 118 031 | 53 613 |
*We use the [MS-CXR](https://physionet.org/content/ms-cxr/) phrase grounding dataset to provide `grounding' examples from MIMIC-CXR.
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** NVIDIA A100 GPUs
- **Hours used:** 1432
- **Cloud Provider:** Azure
- **Compute Region:** West US 2
- **Carbon Emitted:** 107.4 CO₂ eq _(ostensibly offset by this provider)_
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```
@article{Bannur2024MAIRA2GR,
title={MAIRA-2: Grounded Radiology Report Generation},
author={Shruthi Bannur and Kenza Bouzid and Daniel C. Castro and Anton Schwaighofer and Anja Thieme and Sam Bond-Taylor and Maximilian Ilse and Fernando P\'{e}rez-Garc\'{i}a and Valentina Salvatelli and Harshita Sharma and Felix Meissen and Mercy Prasanna Ranjit and Shaury Srivastav and Julia Gong and Noel C. F. Codella and Fabian Falck and Ozan Oktay and Matthew P. Lungren and Maria T. A. Wetscherek and Javier Alvarez-Valle and Stephanie L. Hyland},
journal={arXiv},
year={2024},
volume={abs/2406.04449},
url={https://arxiv.org/abs/2406.04449}
}
```
**APA:**
> Bannur*, S., Bouzid*, K., Castro, D. C., Schwaighofer, A., Thieme, A., Bond-Taylor, S., Ilse, M., Pérez-García, F., Salvatelli, V., Sharma, H., Meissen, F., Ranjit, M.P., Srivastav, S., Gong, J., Codella, N.C.F., Falck, F., Oktay, O., Lungren, M.P., Wetscherek, M.T., Alvarez-Valle, J., & Hyland, S. L. (2024). *MAIRA-2: Grounded Radiology Report Generation*. arXiv preprint abs/2406.04449.
## Model Card Contact
- Stephanie Hyland ([`[email protected]`](mailto:[email protected]))
- Shruthi Bannur ([`[email protected]`](mailto:[email protected]))