|
--- |
|
language: en |
|
tags: |
|
- deberta |
|
- deberta-v3 |
|
thumbnail: https://huggingface.co./front/thumbnails/microsoft.png |
|
license: mit |
|
--- |
|
|
|
## DeBERTa: Decoding-enhanced BERT with Disentangled Attention |
|
|
|
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. |
|
|
|
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates. |
|
|
|
In DeBERTa V3, we replaced the MLM objective with the RTD(Replaced Token Detection) objective introduced by ELECTRA for pre-training, as well as some innovations to be introduced in our upcoming paper. Compared to DeBERTa-V2, our V3 version significantly improves the model performance in downstream tasks. You can find a simple introduction about the model from the appendix A11 in our original [paper](https://arxiv.org/abs/2006.03654), but we will provide more details in a separate write-up. |
|
|
|
The DeBERTa V3 large model comes with 24 layers and a hidden size of 1024 . Its total parameter number is 418M since we use a vocabulary containing 128K tokens which introduce 131M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2. |
|
|
|
|
|
#### Fine-tuning on NLU tasks |
|
|
|
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks. |
|
|
|
| Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m | |
|
|-------------------|-----------|-----------|--------| |
|
| RoBERTa-large | 94.6/88.9 | 89.4/86.5 | 90.2 | |
|
| XLNet-large | 95.1/89.7 | 90.6/87.9 | 90.8 | |
|
| DeBERTa-large | -/- | 90.7/88.0 | 91.3 | |
|
| **DeBERTa-v3-large** | -/- | 91.5/89.0 | **92.0** | |
|
|
|
#### Fine-tuning with HF transformers |
|
|
|
```bash |
|
#!/bin/bash |
|
|
|
cd transformers/examples/pytorch/text-classification/ |
|
|
|
pip install datasets |
|
export TASK_NAME=mnli |
|
|
|
output_dir="ds_results" |
|
|
|
num_gpus=8 |
|
|
|
batch_size=8 |
|
|
|
python -m torch.distributed.launch --nproc_per_node=${num_gpus} \ |
|
run_glue.py \ |
|
--model_name_or_path microsoft/deberta-v3-large \ |
|
--task_name $TASK_NAME \ |
|
--do_train \ |
|
--do_eval \ |
|
--evaluation_strategy steps \ |
|
--max_seq_length 256 \ |
|
--warmup_steps 50 \ |
|
--per_device_train_batch_size ${batch_size} \ |
|
--learning_rate 6e-6 \ |
|
--num_train_epochs 2 \ |
|
--output_dir $output_dir \ |
|
--overwrite_output_dir \ |
|
--logging_steps 1000 \ |
|
--logging_dir $output_dir |
|
|
|
``` |
|
|
|
### Citation |
|
|
|
If you find DeBERTa useful for your work, please cite the following paper: |
|
|
|
``` latex |
|
@misc{he2021debertav3, |
|
title={DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing}, |
|
author={Pengcheng He and Jianfeng Gao and Weizhu Chen}, |
|
year={2021}, |
|
eprint={2111.09543}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
|
|
@inproceedings{ |
|
he2021deberta, |
|
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION}, |
|
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen}, |
|
booktitle={International Conference on Learning Representations}, |
|
year={2021}, |
|
url={https://openreview.net/forum?id=XPZIaotutsD} |
|
} |
|
``` |
|
|