metadata
language: en
tags:
- deberta-v1
- deberta-mnli
tasks: mnli
thumbnail: https://huggingface.co./front/thumbnails/microsoft.png
license: mit
widget:
- text: '[CLS] I love you. [SEP] I like you. [SEP]'
DeBERTa: Decoding-enhanced BERT with Disentangled Attention
DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
Please check the official repository for more details and updates.
This model is the base DeBERTa model fine-tuned with MNLI task
Fine-tuning on NLU tasks
We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.
Model | SQuAD 1.1 | SQuAD 2.0 | MNLI-m |
---|---|---|---|
RoBERTa-base | 91.5/84.6 | 83.7/80.5 | 87.6 |
XLNet-Large | -/- | -/80.2 | 86.8 |
DeBERTa-base | 93.1/87.2 | 86.2/83.1 | 88.8 |
Citation
If you find DeBERTa useful for your work, please cite the following paper:
@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}