deberta-base-mnli / README.md
DeBERTa's picture
Update README.md
52863f8
|
raw
history blame
1.47 kB
metadata
language: en
tags:
  - deberta-v1
  - deberta-mnli
tasks: mnli
thumbnail: https://huggingface.co./front/thumbnails/microsoft.png
license: mit
widget:
  - text: '[CLS] I love you. [SEP] I like you. [SEP]'

DeBERTa: Decoding-enhanced BERT with Disentangled Attention

DeBERTa improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.

Please check the official repository for more details and updates.

This model is the base DeBERTa model fine-tuned with MNLI task

Fine-tuning on NLU tasks

We present the dev results on SQuAD 1.1/2.0 and MNLI tasks.

Model SQuAD 1.1 SQuAD 2.0 MNLI-m
RoBERTa-base 91.5/84.6 83.7/80.5 87.6
XLNet-Large -/- -/80.2 86.8
DeBERTa-base 93.1/87.2 86.2/83.1 88.8

Citation

If you find DeBERTa useful for your work, please cite the following paper:

@inproceedings{
he2021deberta,
title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=XPZIaotutsD}
}